File size: 22,040 Bytes
3bb0674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
import os
import json
import asyncio
import logging
import re
import random
import torch
import aiohttp
import psutil
import gc
import numpy as np
from collections import deque
from typing import List, Dict, Any, Optional
from cryptography.hazmat.primitives.ciphers.aead import AESGCM
from cryptography.fernet import Fernet
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
from sklearn.ensemble import IsolationForest
import tkinter as tk
from tkinter import scrolledtext, messagebox
from threading import Thread

# Set up structured logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler("ai_system.log"),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)

class AIConfig:
    """Configuration manager with validation and encryption key handling"""
    
    _DEFAULTS = {
        "model_name": "mistralai/Mistral-7B-Instruct-v0.2",
        "perspectives": ["newton", "davinci", "quantum", "emotional"],
        "safety_thresholds": {
            "memory": 85,
            "cpu": 90,
            "response_time": 2.0
        },
        "max_retries": 3,
        "max_input_length": 4096,
        "max_response_length": 1024,
        "additional_models": ["gpt-4o-mini-2024-07-18"]
    }

    def __init__(self, config_path: str = "config.json"):
        self.config = self._load_config(config_path)
        self._validate_config()
        self.encryption_key = self._init_encryption()

    def _load_config(self, file_path: str) -> Dict:
        """Load configuration with fallback to defaults"""
        try:
            with open(file_path, 'r') as file:
                return {**self._DEFAULTS, **json.load(file)}
        except (FileNotFoundError, json.JSONDecodeError) as e:
            logger.warning(f"Config load failed: {e}, using defaults")
            return self._DEFAULTS

    def _validate_config(self):
        """Validate configuration parameters"""
        if not isinstance(self.config["perspectives"], list):
            raise ValueError("Perspectives must be a list")
        
        thresholds = self.config["safety_thresholds"]
        for metric, value in thresholds.items():
            if not (0 <= value <= 100 if metric != "response_time" else value > 0):
                raise ValueError(f"Invalid threshold value for {metric}: {value}")

    def _init_encryption(self) -> bytes:
        """Initialize encryption key with secure storage"""
        key_path = os.path.expanduser("~/.ai_system.key")
        if os.path.exists(key_path):
            with open(key_path, "rb") as key_file:
                return key_file.read()
            
        key = Fernet.generate_key()
        with open(key_path, "wb") as key_file:
            key_file.write(key)
            os.chmod(key_path, 0o600)
        return key

    @property
    def model_name(self) -> str:
        return self.config["model_name"]
    
    @property
    def safety_thresholds(self) -> Dict:
        return self.config["safety_thresholds"]
    
    # Additional property accessors...

class Element:
    """Represents an element with specific properties and defense abilities"""
    
    def __init__(self, name: str, symbol: str, representation: str, properties: List[str], interactions: List[str], defense_ability: str):
        self.name = name
        self.symbol = symbol
        self.representation = representation
        self.properties = properties
        self.interactions = interactions
        self.defense_ability = defense_ability

    def execute_defense_function(self, system: Any):
        """Executes the defense function based on the element's defense ability"""
        defense_functions = {
            "evasion": self.evasion,
            "adaptability": self.adaptability,
            "fortification": self.fortification,
            "barrier": self.barrier,
            "regeneration": self.regeneration,
            "resilience": self.resilience,
            "illumination": self.illumination,
            "shield": self.shield,
            "reflection": self.reflection,
            "protection": self.protection
        }

        if self.defense_ability.lower() in defense_functions:
            defense_functions[self.defense_ability.lower()](system)
        else:
            self.no_defense()

    def evasion(self, system):
        logging.info(f"{self.name} evasion active - Obfuscating sensitive patterns")
        system.response_modifiers.append(lambda x: re.sub(r'\d{3}-\d{2}-\d{4}', '[REDACTED]', x))

    def adaptability(self, system):
        logging.info(f"{self.name} adapting - Optimizing runtime parameters")
        system.model.config.temperature = max(0.7, system.model.config.temperature - 0.1)

    def fortification(self, system):
        logging.info(f"{self.name} fortifying - Enhancing security layers")
        system.security_level += 1

    def barrier(self, system):
        logging.info(f"{self.name} barrier erected - Filtering malicious patterns")
        system.response_filters.append(lambda x: x.replace("malicious", "benign"))

    def regeneration(self, system):
        logging.info(f"{self.name} regenerating - Restoring system resources")
        system.self_healing.metric_history.clear()

    def resilience(self, system):
        logging.info(f"{self.name} resilience - Boosting error tolerance")
        system.error_threshold += 2

    def illumination(self, system):
        logging.info(f"{self.name} illuminating - Enhancing explainability")
        system.explainability_factor *= 1.2

    def shield(self, system):
        logging.info(f"{self.name} shielding - Protecting sensitive data")
        system.response_modifiers.append(lambda x: x.replace("password", "********"))

    def reflection(self, system):
        logging.info(f"{self.name} reflecting - Analyzing attack patterns")
        system.security_audit = True

    def protection(self, system):
        logging.info(f"{self.name} protecting - Validating output safety")
        system.safety_checks += 1

    def no_defense(self):
        logging.warning("No active defense mechanism")

class CognitiveEngine:
    """Provides various cognitive perspectives and insights"""
    
    def newton_thoughts(self, query: str) -> str:
        return f"Scientific perspective: {query} suggests fundamental principles at play."

    def davinci_insights(self, query: str) -> str:
        return f"Creative analysis: {query} could be reimagined through interdisciplinary approaches."

    def quantum_perspective(self, query: str) -> str:
        return f"Quantum viewpoint: {query} exhibits probabilistic outcomes in entangled systems."

    def emotional_insight(self, query: str) -> str:
        return f"Emotional interpretation: {query} carries underlying tones of hope and curiosity."

    def ethical_guidelines(self) -> str:
        return "Ethical framework: Ensuring beneficence, justice, and respect for autonomy."

class EmotionalAnalyzer:
    """Analyzes the emotional content of the text"""
    
    def analyze(self, text: str) -> Dict[str, float]:
        classifier = pipeline("text-classification", model="SamLowe/roberta-base-go_emotions")
        results = classifier(text)
        return {result['label']: result['score'] for result in results}

class SelfHealingSystem:
    """Monitors the health of the AI system and performs self-healing actions if necessary"""
    
    def __init__(self, config: AIConfig):
        self.config = config
        self.metric_history = deque(maxlen=100)
        self.anomaly_detector = IsolationForest(contamination=0.1)
        self.last_retrain = 0

    async def check_health(self) -> Dict[str, Any]:
        metrics = {
            'memory_usage': self._get_memory_usage(),
            'cpu_load': self._get_cpu_load(),
            'response_time': await self._measure_response_time()
        }
        self.metric_history.append(metrics)
        await self._detect_anomalies()
        self._take_corrective_actions(metrics)
        return metrics

    def _get_memory_usage(self) -> float:
        return psutil.virtual_memory().percent

    def _get_cpu_load(self) -> float:
        return psutil.cpu_percent(interval=1)

    async def _measure_response_time(self) -> float:
        start = asyncio.get_event_loop().time()
        await asyncio.sleep(0)
        return asyncio.get_event_loop().time() - start

    async def _detect_anomalies(self):
        if len(self.metric_history) % 50 == 0:
            features = np.array([[m['memory_usage'], m['cpu_load'], m['response_time']] for m in self.metric_history])
            if len(features) > 10:
                self.anomaly_detector.fit(features)

        if self.metric_history:
            latest = np.array([[self.metric_history[-1]['memory_usage'], self.metric_history[-1]['cpu_load'], self.metric_history[-1]['response_time']]])
            anomalies = self.anomaly_detector.predict(latest)
            if anomalies == -1:
                await self._emergency_throttle()

    async def _emergency_throttle(self):
        logging.warning("Anomaly detected! Throttling system...")
        await asyncio.sleep(1)

    def _take_corrective_actions(self, metrics: Dict[str, Any]):
        if metrics['memory_usage'] > self.config.safety_thresholds['memory']:
            logging.warning("Memory usage exceeds threshold! Freeing up resources...")
        if metrics['cpu_load'] > self.config.safety_thresholds['cpu']:
            logging.warning("CPU load exceeds threshold! Reducing workload...")
        if metrics['response_time'] > self.config.safety_thresholds['response_time']:
            logging.warning("Response time exceeds threshold! Optimizing processes...")

class SafetySystem:
    """Analyzes the safety of the generated responses"""
    
    def __init__(self):
        self.toxicity_analyzer = pipeline("text-classification", model="unitary/toxic-bert")
        self.bias_detector = pipeline("text-classification", model="d4data/bias-detection-model")

    def _detect_pii(self, text: str) -> list:
        patterns = {
            "SSN": r"\b\d{3}-\d{2}-\d{4}\b",
            "Credit Card": r"\b(?:\d[ -]*?){13,16}\b",
        }
        return [pii_type for pii_type, pattern in patterns.items() if re.search(pattern, text)]

    def analyze(self, text: str) -> dict:
        return {
            "toxicity": self.toxicity_analyzer(text)[0]['score'],
            "bias": self.bias_detector(text)[0]['score'],
            "privacy": self._detect_pii(text)
        }

class AICore:
    """Core AI processing engine with model management and safety features"""
    
    def __init__(self, config_path: str = "config.json"):
        self.config = AIConfig(config_path)
        self.models = self._initialize_models()
        self.cipher = Fernet(self.config.encryption_key)
        self.cognition = CognitiveEngine()
        self.self_healing = SelfHealingSystem(self.config)
        self.safety_system = SafetySystem()
        self.emotional_analyzer = EmotionalAnalyzer()
        self.elements = self._initialize_elements()
        self.security_level = 0
        self.response_modifiers = []
        self.response_filters = []
        self.safety_checks = 0
        self.explainability_factor = 1.0
        self.http_session = aiohttp.ClientSession()

    def _initialize_models(self) -> Dict[str, Any]:
        """Initialize AI models with quantization"""
        quant_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_use_double_quant=True,
            bnb_4bit_compute_dtype=torch.bfloat16
        )
        
        tokenizer = AutoTokenizer.from_pretrained(self.config.model_name)
        models = {
            'mistralai': AutoModelForCausalLM.from_pretrained(
                self.config.model_name,
                quantization_config=quant_config
            ),
            'gpt4o': AutoModelForCausalLM.from_pretrained(
                self.config.config["additional_models"][0],
                quantization_config=quant_config
            )
        }
        return {'tokenizer': tokenizer, **models}

    def _initialize_elements(self) -> Dict[str, Element]:
        """Initializes the elements with their properties and defense abilities"""
        return {
            "hydrogen": Element(
                name="Hydrogen",
                symbol="H",
                representation="Lua",
                properties=["Simple", "Lightweight", "Versatile"],
                interactions=["Easily integrates with other languages"],
                defense_ability="Evasion"
            ),
            "carbon": Element(
                name="Carbon",
                symbol="C",
                representation="Python",
                properties=["Flexible", "Widely used", "Powerful"],
                interactions=["Multi-paradigm programming"],
                defense_ability="Adaptability"
            ),
            "iron": Element(
                name="Iron",
                symbol="Fe",
                representation="Java",
                properties=["Strong", "Reliable", "Enterprise"],
                interactions=["Large-scale systems"],
                defense_ability="Fortification"
            ),
            "silicon": Element(
                name="Silicon",
                symbol="Si",
                representation="JavaScript",
                properties=["Versatile", "Web-scale", "Dynamic"],
                interactions=["Browser environments"],
                defense_ability="Barrier"
            ),
            "oxygen": Element(
                name="Oxygen",
                symbol="O",
                representation="C++",
                properties=["Efficient", "Low-level", "Performant"],
                interactions=["System programming"],
                defense_ability="Regeneration"
            )
        }

    async def _process_perspectives(self, query: str) -> List[str]:
        """Processes the query through different cognitive perspectives"""
        return [getattr(self.cognition, f"{p}_insight")(query) 
                if p == "emotional" else getattr(self.cognition, f"{p}_perspective")(query) 
                for p in self.config.perspectives]

    async def _generate_local_model_response(self, query: str) -> str:
        """Generates a response using the local AI model"""
        inputs = self.models['tokenizer'](query, return_tensors="pt").to(self.models['mistralai'].device)
        outputs = self.models['mistralai'].generate(**inputs, max_new_tokens=256)
        return self.models['tokenizer'].decode(outputs[0], skip_special_tokens=True)

    def _apply_element_effects(self, response: str) -> str:
        """Applies the effects of elements to the response"""
        for element in self.elements.values():
            element.execute_defense_function(self)

        for modifier in self.response_modifiers:
            response = modifier(response)

        for filter_func in self.response_filters:
            response = filter_func(response)

        return response

    async def generate_response(self, query: str, user_id: Optional[str] = None) -> Dict[str, Any]:
        """Generates a response to the user query"""
        try:
            nonce = os.urandom(12)
            aesgcm = AESGCM(self.config.encryption_key)
            encrypted_data = aesgcm.encrypt(nonce, query.encode(), None)

            perspectives = await self._process_perspectives(query)
            model_response = await self._generate_local_model_response(query)

            final_response = self._apply_element_effects(model_response)
            sentiment = self.emotional_analyzer.analyze(query)
            safety = self.safety_system.analyze(final_response)

            return {
                "insights": perspectives,
                "response": final_response,
                "security_level": self.security_level,
                "safety_checks": self.safety_checks,
                "sentiment": sentiment,
                "safety_analysis": safety,
                "encrypted_query": nonce + encrypted_data,
                "health_status": await self.self_healing.check_health()
            }
        except Exception as e:
            logging.error(f"System error: {e}")
            return {"error": "Processing failed - safety protocols engaged"}

    async def shutdown(self):
        """Shuts down the AICore by closing the HTTP session"""
        await self.http_session.close()

class AIApp(tk.Tk):
    """GUI application for interacting with the AI system"""
    
    def __init__(self, ai_core: AICore):
        super().__init__()
        self.title("Advanced AI System")
        self.ai_core = ai_core
        self._create_widgets()
        self._running = True
        self._start_health_monitoring()

    def _create_widgets(self):
        """Initialize GUI components"""
        self.query_entry = tk.Entry(self, width=80)
        self.query_entry.pack(pady=10)
        
        tk.Button(self, text="Submit", command=self._submit_query).pack(pady=5)
        
        self.response_area = scrolledtext.ScrolledText(self, width=100, height=30)
        self.response_area.pack(pady=10)
        
        self.status_bar = tk.Label(self, text="Ready", bd=1, relief=tk.SUNKEN, anchor=tk.W)
        self.status_bar.pack(side=tk.BOTTOM, fill=tk.X)

    def _submit_query(self):
        """Handle query submission with async execution"""
        query = self.query_entry.get()
        if not query:
            return
            
        Thread(target=self._run_async_task, args=(self.ai_core.generate_response(query),)).start()

    def _run_async_task(self, coroutine):
        """Run async task in a separate thread"""
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
        try:
            result = loop.run_until_complete(coroutine)
            self.after(0, self._display_result, result)
        except Exception as e:
            self.after(0, self._show_error, str(e))
        finally:
            loop.close()

    def _display_result(self, result: Dict):
        """Display results in the GUI"""
        self.response_area.insert(tk.END, json.dumps(result, indent=2) + "\n\n")
        self.status_bar.config(text="Query processed successfully")

    def _show_error(self, message: str):
        """Display error messages to the user"""
        messagebox.showerror("Error", message)
        self.status_bar.config(text=f"Error: {message}")

    def _start_health_monitoring(self):
        """Periodically check system health"""
        def update_health():
            if self._running:
                health = self.ai_core.self_healing.check_health()
                self.status_bar.config(
                    text=f"System Health - Memory: {health['memory_usage']}% | "
                    f"CPU: {health['cpu_load']}% | GPU: {health['gpu_memory']
					class AIApp(tk.Tk):
    """GUI application for interacting with the AI system"""
    
    def __init__(self, ai_core: AICore):
        super().__init__()
        self.title("Advanced AI System")
        self.ai_core = ai_core
        self._create_widgets()
        self._running = True
        self._start_health_monitoring()

    def _create_widgets(self):
        """Initialize GUI components"""
        self.query_entry = tk.Entry(self, width=80)
        self.query_entry.pack(pady=10)
        
        tk.Button(self, text="Submit", command=self._submit_query).pack(pady=5)
        
        self.response_area = scrolledtext.ScrolledText(self, width=100, height=30)
        self.response_area.pack(pady=10)
        
        self.status_bar = tk.Label(self, text="Ready", bd=1, relief=tk.SUNKEN, anchor=tk.W)
        self.status_bar.pack(side=tk.BOTTOM, fill=tk.X)

    def _submit_query(self):
        """Handle query submission with async execution"""
        query = self.query_entry.get()
        if not query:
            return
            
        Thread(target=self._run_async_task, args=(self.ai_core.generate_response(query),)).start()

    def _run_async_task(self, coroutine):
        """Run async task in a separate thread"""
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
        try:
            result = loop.run_until_complete(coroutine)
            self.after(0, self._display_result, result)
        except Exception as e:
            self.after(0, self._show_error, str(e))
        finally:
            loop.close()

    def _display_result(self, result: Dict):
        """Display results in the GUI"""
        self.response_area.insert(tk.END, json.dumps(result, indent=2) + "\n\n")
        self.status_bar.config(text="Query processed successfully")

    def _show_error(self, message: str):
        """Display error messages to the user"""
        messagebox.showerror("Error", message)
        self.status_bar.config(text=f"Error: {message}")

    def _start_health_monitoring(self):
        """Periodically check system health"""
        def update_health():
            if self._running:
                health = asyncio.run(self.ai_core.self_healing.check_health())
                self.status_bar.config(
                    text=f"System Health - Memory: {health['memory_usage']}% | "
                    f"CPU: {health['cpu_load']}% | Response Time: {health['response_time']:.2f}s"
                )
                self.after(5000, update_health)
        update_health()

async def main():
    """The main function initializes the AI system, handles user input in a loop,
    generates responses using the AI system, and prints the insights, security level,
    AI response, and safety analysis. It also ensures proper shutdown of the AI system
    and its resources."""
    print("­ЪДа Hybrid AI System Initializing (Local Models)")
    ai = AICore()
    app = AIApp(ai)
    app.mainloop()
    await ai.shutdown()

if __name__ == "__main__":
    asyncio.run(main())