File size: 13,958 Bytes
037fee9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import asyncio
import json
import os
import logging
from typing import List, Dict, Any
from pydantic import BaseModel, ValidationError
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer

# Ensure vaderSentiment is installed
try:
    from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
except ModuleNotFoundError:
    import subprocess
    import sys
    subprocess.check_call([sys.executable, "-m", "pip", "install", "vaderSentiment"])
    from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer

# Ensure nltk is installed and download required data
try:
    import nltk
    from nltk.tokenize import word_tokenize
    nltk.download('punkt', quiet=True)
except ImportError:
    import subprocess
    import sys
    subprocess.check_call([sys.executable, "-m", "pip", "install", "nltk"])
    import nltk
    from nltk.tokenize import word_tokenize
    nltk.download('punkt', quiet=True)

# Import perspectives
from perspectives import (
    NewtonPerspective, DaVinciPerspective, HumanIntuitionPerspective,
    NeuralNetworkPerspective, QuantumComputingPerspective, ResilientKindnessPerspective,
    MathematicalPerspective, PhilosophicalPerspective, CopilotPerspective, BiasMitigationPerspective
)

# Load environment variables
from dotenv import load_dotenv
load_dotenv()
azure_openai_api_key = os.getenv('AZURE_OPENAI_API_KEY')
azure_openai_endpoint = os.getenv('AZURE_OPENAI_ENDPOINT')

# Configuration management using pydantic
class Config(BaseModel):
    real_time_data_sources: List[str]
    sensitive_keywords: List[str]

# Initialize configuration
config = Config(
    real_time_data_sources=["https://api.example.com/data"],
    sensitive_keywords=["password", "ssn"]
)

# Memory management
memory = []

# Sentiment analysis
analyzer = SentimentIntensityAnalyzer()

# Dependency injection
class DependencyInjector:
    def __init__(self):
        self.dependencies = {}

    def register(self, name, dependency):
        self.dependencies[name] = dependency

    def get(self, name):
        return self.dependencies.get(name)

injector = DependencyInjector()
injector.register("config", config)
injector.register("analyzer", analyzer)

# Error handling and logging
logging.basicConfig(level=logging.INFO)

def handle_error(e):
    logging.error(f"Error: {e}")

# Functions to implement
async def llm_should_continue() -> bool:
    # Placeholder logic to determine if the goal is achieved
    return False

async def llm_get_next_action() -> str:
    # Placeholder logic to get the next action
    return "next_action"

async def execute_action(action: str):
    # Placeholder logic to execute an action
    logging.info(f"Executing action: {action}")

async def goal_achieved() -> bool:
    # Placeholder logic to check if the goal is achieved
    return False

async def run():
    while not await goal_achieved():
        action = await llm_get_next_action()
        await execute_action(action)

def process_command(command: str):
    # Placeholder logic to process a command
    logging.info(f"Processing command: {command}")

def analyze_sentiment(text: str) -> Dict[str, float]:
    return analyzer.polarity_scores(text)

def classify_emotion(sentiment_score: Dict[str, float]) -> str:
    # Placeholder logic to classify emotion based on sentiment scores
    return "neutral"

def correlate_emotion_with_perspective(emotion: str) -> str:
    # Placeholder logic to correlate emotion with perspectives
    return "HumanIntuitionPerspective"

def handle_whitespace(text: str) -> str:
    return text.strip()

def determine_next_action(memory: List[Dict[str, Any]]) -> str:
    # Placeholder logic to determine the next action based on memory
    return "next_action"

def generate_response(question: str) -> str:
    # Placeholder logic to generate a response to a question
    return "response"

async def fetch_real_time_data(source_url: str) -> Dict[str, Any]:
    # Placeholder logic to fetch real-time data
    return {"data": "real_time_data"}

def save_response(response: str):
    # Placeholder logic to save the generated response
    logging.info(f"Response saved: {response}")

def backup_response(response: str):
    # Placeholder logic to backup the generated response
    logging.info(f"Response backed up: {response}")

def handle_voice_input():
    # Placeholder for handling voice input
    pass

def handle_image_input(image_path: str):
    # Placeholder for handling image input
    pass

def handle_question(question: str):
    # Placeholder logic to handle a question and apply functions
    pass

def apply_function(function: str):
    # Placeholder logic to apply a given function
    pass

def analyze_element_interactions(element_name1: str, element_name2: str):
    # Placeholder logic to analyze interactions between two elements
    pass

# Setup Logging
def setup_logging(config):
    if config.get('logging_enabled', True):
        log_level = config.get('log_level', 'DEBUG').upper()
        numeric_level = getattr(logging, log_level, logging.DEBUG)
        logging.basicConfig(
            filename='universal_reasoning.log',
            level=numeric_level,
            format='%(asctime)s - %(levelname)s - %(message)s'
        )
    else:
        logging.disable(logging.CRITICAL)

# Load JSON configuration
def load_json_config(file_path):
    if not os.path.exists(file_path):
        logging.error(f"Configuration file '{file_path}' not found.")
        return {}
    try:
        with open(file_path, 'r') as file:
            config = json.load(file)
            logging.info(f"Configuration loaded from '{file_path}'.")
            return config
    except json.JSONDecodeError as e:
        logging.error(f"Error decoding JSON from the configuration file '{file_path}': {e}")
        return {}

# Initialize NLP (basic tokenization)
def analyze_question(question):
    tokens = word_tokenize(question)
    logging.debug(f"Question tokens: {tokens}")
    return tokens

# Define the Element class
class Element:
    def __init__(self, name, symbol, representation, properties, interactions, defense_ability):
        self.name = name
        self.symbol = symbol
        self.representation = representation
        self.properties = properties
        self.interactions = interactions
        self.defense_ability = defense_ability

    def execute_defense_function(self):
        message = f"{self.name} ({self.symbol}) executes its defense ability: {self.defense_ability}"
        logging.info(message)
        return message

# Define the CustomRecognizer class
class CustomRecognizer:
    def recognize(self, question):
        # Simple keyword-based recognizer for demonstration purposes
        if any(element_name.lower() in question.lower() for element_name in ["hydrogen", "diamond"]):
            return RecognizerResult(question)
        return RecognizerResult(None)

    def get_top_intent(self, recognizer_result):
        if recognizer_result.text:
            return "ElementDefense"
        else:
            return "None"

class RecognizerResult:
    def __init__(self, text):
        self.text = text

# Universal Reasoning Aggregator
class UniversalReasoning:
    def __init__(self, config):
        self.config = config
        self.perspectives = self.initialize_perspectives()
        self.elements = self.initialize_elements()
        self.recognizer = CustomRecognizer()
        # Initialize the sentiment analyzer
        self.sentiment_analyzer = SentimentIntensityAnalyzer()

    def initialize_perspectives(self):
        perspective_names = self.config.get('enabled_perspectives', [
            "newton",
            "davinci",
            "human_intuition",
            "neural_network",
            "quantum_computing",
            "resilient_kindness",
            "mathematical",
            "philosophical",
            "copilot",
            "bias_mitigation"
        ])
        perspective_classes = {
            "newton": NewtonPerspective,
            "davinci": DaVinciPerspective,
            "human_intuition": HumanIntuitionPerspective,
            "neural_network": NeuralNetworkPerspective,
            "quantum_computing": QuantumComputingPerspective,
            "resilient_kindness": ResilientKindnessPerspective,
            "mathematical": MathematicalPerspective,
            "philosophical": PhilosophicalPerspective,
            "copilot": CopilotPerspective,
            "bias_mitigation": BiasMitigationPerspective
        }
        perspectives = []
        for name in perspective_names:
            cls = perspective_classes.get(name.lower())
            if cls:
                perspectives.append(cls(self.config))
                logging.debug(f"Perspective '{name}' initialized.")
            else:
                logging.warning(f"Perspective '{name}' is not recognized and will be skipped.")
        return perspectives

    def initialize_elements(self):
        elements = [
            Element(
                name="Hydrogen",
                symbol="H",
                representation="Lua",
                properties=["Simple", "Lightweight", "Versatile"],
                interactions=["Easily integrates with other languages and systems"],
                defense_ability="Evasion"
            ),
            # You can add more elements as needed
            Element(
                name="Diamond",
                symbol="D",
                representation="Kotlin",
                properties=["Modern", "Concise", "Safe"],
                interactions=["Used for Android development"],
                defense_ability="Adaptability"
            )
        ]
        return elements

    async def generate_response(self, question):
        responses = []
        tasks = []
                # Generate responses from perspectives concurrently
        for perspective in self.perspectives:
            if asyncio.iscoroutinefunction(perspective.generate_response):
                tasks.append(perspective.generate_response(question))
            else:
                # Wrap synchronous functions in coroutine
                async def sync_wrapper(perspective, question):
                    return perspective.generate_response(question)
                tasks.append(sync_wrapper(perspective, question))
        
        perspective_results = await asyncio.gather(*tasks, return_exceptions=True)
        for perspective, result in zip(self.perspectives, perspective_results):
            if isinstance(result, Exception):
                logging.error(f"Error generating response from {perspective.__class__.__name__}: {result}")
            else:
                responses.append(result)
                logging.debug(f"Response from {perspective.__class__.__name__}: {result}")
        
        # Handle element defense logic
        recognizer_result = self.recognizer.recognize(question)
        top_intent = self.recognizer.get_top_intent(recognizer_result)
        if top_intent == "ElementDefense":
            element_name = recognizer_result.text.strip()
            element = next(
                (el for el in self.elements if el.name.lower() in element_name.lower()),
                None
            )
            if element:
                defense_message = element.execute_defense_function()
                responses.append(defense_message)
            else:
                logging.info(f"No matching element found for '{element_name}'")
        
        ethical_considerations = self.config.get(
            'ethical_considerations',
            "Always act with transparency, fairness, and respect for privacy."
        )
        responses.append(f"**Ethical Considerations:**\n{ethical_considerations}")
        
        formatted_response = "\n\n".join(responses)
        return formatted_response

    def save_response(self, response):
        if self.config.get('enable_response_saving', False):
            save_path = self.config.get('response_save_path', 'responses.txt')
            try:
                with open(save_path, 'a', encoding='utf-8') as file:
                    file.write(response + '\n')
                logging.info(f"Response saved to '{save_path}'.")
            except Exception as e:
                logging.error(f"Error saving response to '{save_path}': {e}")

    def backup_response(self, response):
        if self.config.get('backup_responses', {}).get('enabled', False):
            backup_path = self.config['backup_responses'].get('backup_path', 'backup_responses.txt')
            try:
                with open(backup_path, 'a', encoding='utf-8') as file:
                    file.write(response + '\n')
                logging.info(f"Response backed up to '{backup_path}'.")
            except Exception as e:
                logging.error(f"Error backing up response to '{backup_path}': {e}")

# Example usage
if __name__ == "__main__":
    try:
        config = load_json_config('config.json')
        # Add Azure OpenAI configurations to the config
        config['azure_openai_api_key'] = azure_openai_api_key
        config['azure_openai_endpoint'] = azure_openai_endpoint
        setup_logging(config)
        universal_reasoning = UniversalReasoning(config)
        question = "Tell me about Hydrogen and its defense mechanisms."
        response = asyncio.run(universal_reasoning.generate_response(question))
        print(response)
        if response:
            universal_reasoning.save_response(response)
            universal_reasoning.backup_response(response)
    except ValidationError as e:
        handle_error(e)