Spaces:
Runtime error
Runtime error
import streamlit as st | |
from PIL import Image | |
import numpy as np | |
import io | |
import zipfile | |
def mock_encoder(image): | |
"""Simulates encoding an image into a latent representation.""" | |
# This is a placeholder. In practice, this would be your trained encoder's output. | |
return np.random.normal(0, 1, (1, 100)), np.random.normal(0, 1, (1, 100)), np.random.normal(0, 1, (1, 100)) | |
def mock_decoder(latent_representation): | |
"""Simulates decoding a latent representation back into an image.""" | |
# Returns a random image for demonstration | |
return np.random.rand(28, 28, 1) * 255 | |
def latent_space_augmentation(image, encoder, decoder, noise_scale=0.1): | |
"""Performs latent space augmentation by adding noise to the latent representation.""" | |
z_mean, z_log_var, _ = encoder(image) | |
epsilon = np.random.normal(size=z_mean.shape) | |
z_augmented = z_mean + np.exp(0.5 * z_log_var) * epsilon * noise_scale | |
augmented_image = decoder(z_augmented) | |
return np.squeeze(augmented_image) | |
def create_downloadable_zip(augmented_images): | |
"""Creates a ZIP file in memory for downloading.""" | |
zip_buffer = io.BytesIO() | |
with zipfile.ZipFile(zip_buffer, "a", zipfile.ZIP_DEFLATED, False) as zip_file: | |
for idx, image_data in enumerate(augmented_images): | |
img_byte_arr = io.BytesIO(image_data) | |
zip_file.writestr(f"augmented_image_{idx+1}.jpeg", img_byte_arr.getvalue()) | |
zip_buffer.seek(0) | |
return zip_buffer | |
st.title("Batch Image Augmentation with Latent Space Manipulation") | |
uploaded_files = st.file_uploader("Choose images (1-10)", accept_multiple_files=True, type=["jpg", "jpeg", "png"]) | |
augmentations_count = st.number_input("Number of augmented samples per image", min_value=1, max_value=10, value=3) | |
if uploaded_files and st.button("Generate Augmented Images"): | |
all_augmented_images = [] | |
for uploaded_file in uploaded_files: | |
image = Image.open(uploaded_file).convert("RGB") | |
image = image.resize((28, 28)) # Resize for simplicity with the mock decoder | |
# Convert to numpy for processing | |
image_np = np.array(image) / 255.0 # Normalize | |
for _ in range(augmentations_count): | |
augmented_image_np = latent_space_augmentation(image_np, mock_encoder, mock_decoder) | |
augmented_image = (augmented_image_np * 255).astype(np.uint8) # Denormalize | |
augmented_images_io = io.BytesIO() | |
Image.fromarray(augmented_image).save(augmented_images_io, format="JPEG") | |
all_augmented_images.append(augmented_images_io.getvalue()) | |
if all_augmented_images: | |
zip_buffer = create_downloadable_zip(all_augmented_images) | |
st.download_button( | |
label="Download Augmented Dataset", | |
data=zip_buffer, | |
file_name="augmented_images.zip", | |
mime="application/zip" | |
) | |