import streamlit as st from PIL import Image import numpy as np import io import zipfile def mock_encoder(image): """Simulates encoding an image into a latent representation.""" # This is a placeholder. In practice, this would be your trained encoder's output. return np.random.normal(0, 1, (1, 100)), np.random.normal(0, 1, (1, 100)), np.random.normal(0, 1, (1, 100)) def mock_decoder(latent_representation): """Simulates decoding a latent representation back into an image.""" # Returns a random image for demonstration return np.random.rand(28, 28, 1) * 255 def latent_space_augmentation(image, encoder, decoder, noise_scale=0.1): """Performs latent space augmentation by adding noise to the latent representation.""" z_mean, z_log_var, _ = encoder(image) epsilon = np.random.normal(size=z_mean.shape) z_augmented = z_mean + np.exp(0.5 * z_log_var) * epsilon * noise_scale augmented_image = decoder(z_augmented) return np.squeeze(augmented_image) def create_downloadable_zip(augmented_images): """Creates a ZIP file in memory for downloading.""" zip_buffer = io.BytesIO() with zipfile.ZipFile(zip_buffer, "a", zipfile.ZIP_DEFLATED, False) as zip_file: for idx, image_data in enumerate(augmented_images): img_byte_arr = io.BytesIO(image_data) zip_file.writestr(f"augmented_image_{idx+1}.jpeg", img_byte_arr.getvalue()) zip_buffer.seek(0) return zip_buffer st.title("Batch Image Augmentation with Latent Space Manipulation") uploaded_files = st.file_uploader("Choose images (1-10)", accept_multiple_files=True, type=["jpg", "jpeg", "png"]) augmentations_count = st.number_input("Number of augmented samples per image", min_value=1, max_value=10, value=3) if uploaded_files and st.button("Generate Augmented Images"): all_augmented_images = [] for uploaded_file in uploaded_files: image = Image.open(uploaded_file).convert("RGB") image = image.resize((28, 28)) # Resize for simplicity with the mock decoder # Convert to numpy for processing image_np = np.array(image) / 255.0 # Normalize for _ in range(augmentations_count): augmented_image_np = latent_space_augmentation(image_np, mock_encoder, mock_decoder) augmented_image = (augmented_image_np * 255).astype(np.uint8) # Denormalize augmented_images_io = io.BytesIO() Image.fromarray(augmented_image).save(augmented_images_io, format="JPEG") all_augmented_images.append(augmented_images_io.getvalue()) if all_augmented_images: zip_buffer = create_downloadable_zip(all_augmented_images) st.download_button( label="Download Augmented Dataset", data=zip_buffer, file_name="augmented_images.zip", mime="application/zip" )