Spaces:
Running
Running
import os | |
import time | |
from typing import List, Tuple, Optional | |
import google.generativeai as genai | |
import gradio as gr | |
from PIL import Image | |
# Ensure Google API Key is set | |
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY") | |
TITLE = """<h1 align="center">β Espresso with LeProf π₯</h1>""" | |
SUBTITLE = """<h2 align="center">π Knowledge Shots for Curious Minds</h2>""" | |
IMAGE_WIDTH = 512 | |
def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]: | |
return [seq.strip() for seq in stop_sequences.split(",")] if stop_sequences else None | |
def preprocess_image(image: Image.Image) -> Image.Image: | |
image_height = int(image.height * IMAGE_WIDTH / image.width) | |
return image.resize((IMAGE_WIDTH, image_height)) | |
def user(text_prompt: str, chatbot: List[Tuple[str, str]]): | |
"""Handles user input and appends to the chatbot.""" | |
return "", chatbot + [[text_prompt, None]] | |
def bot( | |
google_key: str, | |
image_prompt: Optional[Image.Image], | |
temperature: float, | |
max_output_tokens: int, | |
stop_sequences: str, | |
top_k: int, | |
top_p: float, | |
topic: str, | |
chatbot: List[Tuple[str, str]], | |
): | |
"""Generates a response using Google Gemini.""" | |
google_key = google_key or GOOGLE_API_KEY | |
if not google_key: | |
raise ValueError("GOOGLE_API_KEY is not set. Please set it up.") | |
if not topic: | |
raise ValueError("Topic is not set. Please provide a topic.") | |
# Get the user's input | |
text_prompt = chatbot[-1][0] | |
# Construct the system prompt | |
analysis_system_prompt = ( | |
f"You are an expert in {topic}. Analyze the provided text with a focus on {topic}, " | |
"identifying recent issues, insights, or improvements relevant to academic standards and effectiveness. " | |
"Offer actionable advice for enhancing knowledge and provide real-life examples." | |
) | |
# Configure Generative AI model | |
genai.configure(api_key=google_key) | |
generation_config = genai.types.GenerationConfig( | |
temperature=temperature, | |
max_output_tokens=max_output_tokens, | |
stop_sequences=preprocess_stop_sequences(stop_sequences), | |
top_k=top_k, | |
top_p=top_p, | |
) | |
model_name = "gemini-1.5-pro-latest" | |
model = genai.GenerativeModel(model_name) | |
try: | |
# Pass the system prompt and user input as a single prompt | |
response = model.generate_content( | |
prompt=analysis_system_prompt, | |
input=text_prompt, | |
generation_config=generation_config, | |
) | |
except KeyError as e: | |
raise KeyError(f"Error in response generation: {e}") | |
# Process and stream the response | |
chatbot[-1][1] = "" | |
for chunk in response: | |
for i in range(0, len(chunk.text), 10): | |
chatbot[-1][1] += chunk.text[i : i + 10] | |
time.sleep(0.01) | |
yield chatbot | |
# Gradio Components | |
google_key_component = gr.Textbox( | |
label="GOOGLE API KEY", | |
type="password", | |
placeholder="Enter your API key...", | |
visible=GOOGLE_API_KEY is None, | |
) | |
topic_input = gr.Textbox(label="Set the Topic", placeholder="e.g., AI in Education, Human-Computer Interaction") | |
text_prompt_component = gr.Textbox(label="Ask LeProf", placeholder="Type your question here...") | |
chatbot_component = gr.Chatbot(label="LeProf says") | |
run_button_component = gr.Button("π« Get Your Knowledge Shot") | |
example_data = [ | |
["AI in Education", "What are the challenges in AI tools for personalized learning?"], | |
["Multimedia Accessibility", "How can multimedia be made more accessible to people with disabilities?"], | |
["Ethical AI", "What are the ethical implications of AI in social media content moderation?"], | |
["Virtual Reality", "How does virtual reality improve skill training in industries?"], | |
["Augmented Reality", "What are the UX challenges in augmented reality for urban navigation?"], | |
] | |
# Advanced Settings | |
temperature_component = gr.Slider( | |
minimum=0, maximum=1.0, value=0.4, step=0.05, label="Creativity Level" | |
) | |
max_output_tokens_component = gr.Slider( | |
minimum=1, maximum=2048, value=1024, step=1, label="Max Tokens" | |
) | |
stop_sequences_component = gr.Textbox(label="Stop Sequences", placeholder="e.g., STOP, END") | |
top_k_component = gr.Slider( | |
minimum=1, maximum=40, value=32, step=1, label="Top-K Sampling" | |
) | |
top_p_component = gr.Slider( | |
minimum=0, maximum=1.0, value=1.0, step=0.01, label="Top-P Sampling" | |
) | |
# Layout with Gradio Blocks | |
with gr.Blocks() as demo: | |
gr.HTML(TITLE) | |
gr.HTML(SUBTITLE) | |
google_key_component.render() | |
topic_input.render() | |
chatbot_component.render() | |
text_prompt_component.render() | |
gr.Examples( | |
examples=example_data, | |
inputs=[topic_input, text_prompt_component], | |
label="Example Questions", | |
) | |
run_button_component.render() | |
with gr.Accordion("Parameters", open=False): | |
temperature_component.render() | |
max_output_tokens_component.render() | |
stop_sequences_component.render() | |
with gr.Accordion("Advanced Settings", open=False): | |
top_k_component.render() | |
top_p_component.render() | |
# Event Handlers | |
run_button_component.click( | |
fn=user, inputs=[text_prompt_component, chatbot_component], outputs=[text_prompt_component, chatbot_component], queue=False | |
).then( | |
fn=bot, | |
inputs=[ | |
google_key_component, | |
None, # Placeholder for image_prompt (not used in this example) | |
temperature_component, | |
max_output_tokens_component, | |
stop_sequences_component, | |
top_k_component, | |
top_p_component, | |
topic_input, | |
chatbot_component, | |
], | |
outputs=[chatbot_component] | |
) | |
text_prompt_component.submit( | |
fn=user, inputs=[text_prompt_component, chatbot_component], outputs=[text_prompt_component, chatbot_component], queue=False | |
).then( | |
fn=bot, | |
inputs=[ | |
google_key_component, | |
None, # Placeholder for image_prompt (not used in this example) | |
temperature_component, | |
max_output_tokens_component, | |
stop_sequences_component, | |
top_k_component, | |
top_p_component, | |
topic_input, | |
chatbot_component, | |
], | |
outputs=[chatbot_component] | |
) | |
# Launch the App | |
demo.launch() |