import os
import time
from typing import List, Tuple, Optional
import google.generativeai as genai
import gradio as gr
from PIL import Image
# Ensure Google API Key is set
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
TITLE = """
☕ Espresso with LeProf 🔥
"""
SUBTITLE = """🌟 Knowledge Shots for Curious Minds
"""
IMAGE_WIDTH = 512
def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
return [seq.strip() for seq in stop_sequences.split(",")] if stop_sequences else None
def preprocess_image(image: Image.Image) -> Image.Image:
image_height = int(image.height * IMAGE_WIDTH / image.width)
return image.resize((IMAGE_WIDTH, image_height))
def user(text_prompt: str, chatbot: List[Tuple[str, str]]):
"""Handles user input and appends to the chatbot."""
return "", chatbot + [[text_prompt, None]]
def bot(
google_key: str,
image_prompt: Optional[Image.Image],
temperature: float,
max_output_tokens: int,
stop_sequences: str,
top_k: int,
top_p: float,
topic: str,
chatbot: List[Tuple[str, str]],
):
"""Generates a response using Google Gemini."""
google_key = google_key or GOOGLE_API_KEY
if not google_key:
raise ValueError("GOOGLE_API_KEY is not set. Please set it up.")
if not topic:
raise ValueError("Topic is not set. Please provide a topic.")
# Get the user's input
text_prompt = chatbot[-1][0]
# Construct the system prompt
analysis_system_prompt = (
f"You are an expert in {topic}. Analyze the provided text with a focus on {topic}, "
"identifying recent issues, insights, or improvements relevant to academic standards and effectiveness. "
"Offer actionable advice for enhancing knowledge and provide real-life examples."
)
# Configure Generative AI model
genai.configure(api_key=google_key)
generation_config = genai.types.GenerationConfig(
temperature=temperature,
max_output_tokens=max_output_tokens,
stop_sequences=preprocess_stop_sequences(stop_sequences),
top_k=top_k,
top_p=top_p,
)
model_name = "gemini-1.5-pro-latest"
model = genai.GenerativeModel(model_name)
try:
# Pass the system prompt and user input as a single prompt
response = model.generate_content(
prompt=analysis_system_prompt,
input=text_prompt,
generation_config=generation_config,
)
except KeyError as e:
raise KeyError(f"Error in response generation: {e}")
# Process and stream the response
chatbot[-1][1] = ""
for chunk in response:
for i in range(0, len(chunk.text), 10):
chatbot[-1][1] += chunk.text[i : i + 10]
time.sleep(0.01)
yield chatbot
# Gradio Components
google_key_component = gr.Textbox(
label="GOOGLE API KEY",
type="password",
placeholder="Enter your API key...",
visible=GOOGLE_API_KEY is None,
)
topic_input = gr.Textbox(label="Set the Topic", placeholder="e.g., AI in Education, Human-Computer Interaction")
text_prompt_component = gr.Textbox(label="Ask LeProf", placeholder="Type your question here...")
chatbot_component = gr.Chatbot(label="LeProf says")
run_button_component = gr.Button("🫗 Get Your Knowledge Shot")
example_data = [
["AI in Education", "What are the challenges in AI tools for personalized learning?"],
["Multimedia Accessibility", "How can multimedia be made more accessible to people with disabilities?"],
["Ethical AI", "What are the ethical implications of AI in social media content moderation?"],
["Virtual Reality", "How does virtual reality improve skill training in industries?"],
["Augmented Reality", "What are the UX challenges in augmented reality for urban navigation?"],
]
# Advanced Settings
temperature_component = gr.Slider(
minimum=0, maximum=1.0, value=0.4, step=0.05, label="Creativity Level"
)
max_output_tokens_component = gr.Slider(
minimum=1, maximum=2048, value=1024, step=1, label="Max Tokens"
)
stop_sequences_component = gr.Textbox(label="Stop Sequences", placeholder="e.g., STOP, END")
top_k_component = gr.Slider(
minimum=1, maximum=40, value=32, step=1, label="Top-K Sampling"
)
top_p_component = gr.Slider(
minimum=0, maximum=1.0, value=1.0, step=0.01, label="Top-P Sampling"
)
# Layout with Gradio Blocks
with gr.Blocks() as demo:
gr.HTML(TITLE)
gr.HTML(SUBTITLE)
google_key_component.render()
topic_input.render()
chatbot_component.render()
text_prompt_component.render()
gr.Examples(
examples=example_data,
inputs=[topic_input, text_prompt_component],
label="Example Questions",
)
run_button_component.render()
with gr.Accordion("Parameters", open=False):
temperature_component.render()
max_output_tokens_component.render()
stop_sequences_component.render()
with gr.Accordion("Advanced Settings", open=False):
top_k_component.render()
top_p_component.render()
# Event Handlers
run_button_component.click(
fn=user, inputs=[text_prompt_component, chatbot_component], outputs=[text_prompt_component, chatbot_component], queue=False
).then(
fn=bot,
inputs=[
google_key_component,
None, # Placeholder for image_prompt (not used in this example)
temperature_component,
max_output_tokens_component,
stop_sequences_component,
top_k_component,
top_p_component,
topic_input,
chatbot_component,
],
outputs=[chatbot_component]
)
text_prompt_component.submit(
fn=user, inputs=[text_prompt_component, chatbot_component], outputs=[text_prompt_component, chatbot_component], queue=False
).then(
fn=bot,
inputs=[
google_key_component,
None, # Placeholder for image_prompt (not used in this example)
temperature_component,
max_output_tokens_component,
stop_sequences_component,
top_k_component,
top_p_component,
topic_input,
chatbot_component,
],
outputs=[chatbot_component]
)
# Launch the App
demo.launch()