RageshAntony's picture
added ProgressAuraFlowPipeline
9dab390 verified
raw
history blame
6.92 kB
import spaces
import torch
from inspect import signature
from diffusers import (
FluxPipeline,
StableDiffusion3Pipeline,
PixArtSigmaPipeline,
SanaPipeline,
AuraFlowPipeline,
Kandinsky3Pipeline,
HunyuanDiTPipeline,
LuminaText2ImgPipeline,AutoPipelineForText2Image
)
import gradio as gr
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
class ProgressAuraFlowPipeline(DiffusionPipeline):
def __init__(self, original_pipeline):
super().__init__()
self.original_pipeline = original_pipeline
# Register all components from the original pipeline
for attr_name, attr_value in vars(original_pipeline).items():
setattr(self, attr_name, attr_value)
@torch.no_grad()
def __call__(
self,
prompt,
num_inference_steps=30,
generator=None,
guidance_scale=7.5,
callback=None,
callback_steps=1,
**kwargs
):
# Initialize the progress tracking
self._num_inference_steps = num_inference_steps
self._step = 0
def progress_callback(pipe, step_index, timestep, callback_kwargs):
if callback and step_index % callback_steps == 0:
callback(step_index, timestep, callback_kwargs)
return callback_kwargs
# Monkey patch the original pipeline's progress tracking
original_step = self.original_pipeline.scheduler.step
def wrapped_step(*args, **kwargs):
self._step += 1
if callback:
progress_callback(self, self._step, None, {})
return original_step(*args, **kwargs)
self.original_pipeline.scheduler.step = wrapped_step
try:
# Call the original pipeline
result = self.original_pipeline(
prompt=prompt,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale,
**kwargs
)
return result
finally:
# Restore the original step function
self.original_pipeline.scheduler.step = original_step
cache_dir = '/workspace/hf_cache'
MODEL_CONFIGS = {
"FLUX": {
"repo_id": "black-forest-labs/FLUX.1-dev",
"pipeline_class": FluxPipeline,
},
"Stable Diffusion 3.5": {
"repo_id": "stabilityai/stable-diffusion-3.5-large",
"pipeline_class": StableDiffusion3Pipeline,
},
"PixArt": {
"repo_id": "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",
"pipeline_class": PixArtSigmaPipeline,
},
"SANA": {
"repo_id": "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers",
"pipeline_class": SanaPipeline,
},
"AuraFlow": {
"repo_id": "fal/AuraFlow",
"pipeline_class": AuraFlowPipeline,
},
"Kandinsky": {
"repo_id": "kandinsky-community/kandinsky-3",
"pipeline_class": Kandinsky3Pipeline,
},
"Hunyuan": {
"repo_id": "Tencent-Hunyuan/HunyuanDiT-Diffusers",
"pipeline_class": HunyuanDiTPipeline,
},
"Lumina": {
"repo_id": "Alpha-VLLM/Lumina-Next-SFT-diffusers",
"pipeline_class": LuminaText2ImgPipeline,
}
}
def generate_image_with_progress(pipe, prompt, num_steps, guidance_scale=None, seed=None, progress=gr.Progress(track_tqdm=True)):
generator = None
if seed is not None:
generator = torch.Generator("cuda").manual_seed(seed)
def callback(pipe, step_index, timestep, callback_kwargs):
print(f" callback => {step_index}, {timestep}")
if step_index is None:
step_index = 0
cur_prg = step_index / num_steps
progress(cur_prg, desc=f"Step {step_index}/{num_steps}")
return callback_kwargs
print(f"START GENR ")
# Get the signature of the pipe
pipe_signature = signature(pipe)
# Check for the presence of "guidance_scale" and "callback_on_step_end" in the signature
has_guidance_scale = "guidance_scale" in pipe_signature.parameters
has_callback_on_step_end = "callback_on_step_end" in pipe_signature.parameters
if has_guidance_scale and has_callback_on_step_end:
print("has callback_on_step_end and has guidance_scale")
image = pipe(
prompt,
num_inference_steps=num_steps,
generator=generator,
guidance_scale=guidance_scale,
callback_on_step_end=callback,
).images[0]
elif not has_callback_on_step_end and has_guidance_scale:
print("NO callback_on_step_end and has guidance_scale")
image = pipe(
prompt,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
generator=generator,
).images[0]
elif has_callback_on_step_end and not has_guidance_scale:
print("has callback_on_step_end and NO guidance_scale")
image = pipe(
prompt,
num_inference_steps=num_steps,
generator=generator,
callback_on_step_end=callback,
).images[0]
elif not has_callback_on_step_end and not has_guidance_scale:
print("NO callback_on_step_end and NO guidance_scale")
image = pipe(
prompt,
num_inference_steps=num_steps,
generator=generator,
).images[0]
return image
@spaces.GPU(duration=170)
def create_pipeline_logic(prompt_text, model_name):
print(f"starting {model_name}")
progress = gr.Progress(track_tqdm=True)
num_steps = 30
guidance_scale = 7.5 # Example guidance scale, can be adjusted per model
seed = 42
config = MODEL_CONFIGS[model_name]
pipe_class = config["pipeline_class"]
pipe = AutoPipelineForText2Image.from_pretrained(
config["repo_id"],
variant="fp16",
#cache_dir=config["cache_dir"],
torch_dtype=torch.bfloat16
).to("cuda")
image = generate_image_with_progress(
pipe, prompt_text, num_steps=num_steps, guidance_scale=guidance_scale, seed=seed, progress=progress
)
return f"Seed: {seed}", image
def main():
with gr.Blocks() as app:
gr.Markdown("# Dynamic Multiple Model Image Generation")
prompt_text = gr.Textbox(label="Enter prompt")
for model_name, config in MODEL_CONFIGS.items():
with gr.Tab(model_name):
button = gr.Button(f"Run {model_name}")
output = gr.Textbox(label="Status")
img = gr.Image(label=model_name, height=300)
button.click(fn=create_pipeline_logic, inputs=[prompt_text, gr.Text(value= model_name,visible=False)], outputs=[output, img])
app.launch()
if __name__ == "__main__":
main()