Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,916 Bytes
886f105 7d40369 6bcec5f 9461fdc e8ea8da 9461fdc 7d40369 9dab390 7d40369 9461fdc 7d40369 9461fdc 072be42 40e3650 9461fdc 40e3650 9461fdc 40e3650 a0e45a8 9461fdc 8f2de47 e8ea8da 7d40369 7054a36 9461fdc e8ea8da 9461fdc 7054a36 99d1063 7054a36 920ac22 cdd3493 920ac22 7d40369 072be42 7d40369 99d1063 7d40369 cdd3493 920ac22 e8ea8da 072be42 e8ea8da cdd3493 7d40369 cdd3493 e8ea8da cdd3493 920ac22 e8ea8da 072be42 7d40369 9461fdc 7d40369 886f105 b4bf7d7 71c5d37 fbcf80b 71c5d37 b4bf7d7 71c5d37 cc32d9c cdd3493 71c5d37 9461fdc 7d40369 9461fdc 7d40369 9461fdc 7d40369 b4bf7d7 7d40369 9461fdc 7d40369 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import spaces
import torch
from inspect import signature
from diffusers import (
FluxPipeline,
StableDiffusion3Pipeline,
PixArtSigmaPipeline,
SanaPipeline,
AuraFlowPipeline,
Kandinsky3Pipeline,
HunyuanDiTPipeline,
LuminaText2ImgPipeline,AutoPipelineForText2Image
)
import gradio as gr
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
class ProgressAuraFlowPipeline(DiffusionPipeline):
def __init__(self, original_pipeline):
super().__init__()
self.original_pipeline = original_pipeline
# Register all components from the original pipeline
for attr_name, attr_value in vars(original_pipeline).items():
setattr(self, attr_name, attr_value)
@torch.no_grad()
def __call__(
self,
prompt,
num_inference_steps=30,
generator=None,
guidance_scale=7.5,
callback=None,
callback_steps=1,
**kwargs
):
# Initialize the progress tracking
self._num_inference_steps = num_inference_steps
self._step = 0
def progress_callback(pipe, step_index, timestep, callback_kwargs):
if callback and step_index % callback_steps == 0:
callback(step_index, timestep, callback_kwargs)
return callback_kwargs
# Monkey patch the original pipeline's progress tracking
original_step = self.original_pipeline.scheduler.step
def wrapped_step(*args, **kwargs):
self._step += 1
if callback:
progress_callback(self, self._step, None, {})
return original_step(*args, **kwargs)
self.original_pipeline.scheduler.step = wrapped_step
try:
# Call the original pipeline
result = self.original_pipeline(
prompt=prompt,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale,
**kwargs
)
return result
finally:
# Restore the original step function
self.original_pipeline.scheduler.step = original_step
cache_dir = '/workspace/hf_cache'
MODEL_CONFIGS = {
"FLUX": {
"repo_id": "black-forest-labs/FLUX.1-dev",
"pipeline_class": FluxPipeline,
},
"Stable Diffusion 3.5": {
"repo_id": "stabilityai/stable-diffusion-3.5-large",
"pipeline_class": StableDiffusion3Pipeline,
},
"PixArt": {
"repo_id": "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",
"pipeline_class": PixArtSigmaPipeline,
},
"SANA": {
"repo_id": "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers",
"pipeline_class": SanaPipeline,
},
"AuraFlow": {
"repo_id": "fal/AuraFlow",
"pipeline_class": AuraFlowPipeline,
},
"Kandinsky": {
"repo_id": "kandinsky-community/kandinsky-3",
"pipeline_class": Kandinsky3Pipeline,
},
"Hunyuan": {
"repo_id": "Tencent-Hunyuan/HunyuanDiT-Diffusers",
"pipeline_class": HunyuanDiTPipeline,
},
"Lumina": {
"repo_id": "Alpha-VLLM/Lumina-Next-SFT-diffusers",
"pipeline_class": LuminaText2ImgPipeline,
}
}
def generate_image_with_progress(pipe, prompt, num_steps, guidance_scale=None, seed=None, progress=gr.Progress(track_tqdm=True)):
generator = None
if seed is not None:
generator = torch.Generator("cuda").manual_seed(seed)
def callback(pipe, step_index, timestep, callback_kwargs):
print(f" callback => {step_index}, {timestep}")
if step_index is None:
step_index = 0
cur_prg = step_index / num_steps
progress(cur_prg, desc=f"Step {step_index}/{num_steps}")
return callback_kwargs
print(f"START GENR ")
# Get the signature of the pipe
pipe_signature = signature(pipe)
# Check for the presence of "guidance_scale" and "callback_on_step_end" in the signature
has_guidance_scale = "guidance_scale" in pipe_signature.parameters
has_callback_on_step_end = "callback_on_step_end" in pipe_signature.parameters
if has_guidance_scale and has_callback_on_step_end:
print("has callback_on_step_end and has guidance_scale")
image = pipe(
prompt,
num_inference_steps=num_steps,
generator=generator,
guidance_scale=guidance_scale,
callback_on_step_end=callback,
).images[0]
elif not has_callback_on_step_end and has_guidance_scale:
print("NO callback_on_step_end and has guidance_scale")
image = pipe(
prompt,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
generator=generator,
).images[0]
elif has_callback_on_step_end and not has_guidance_scale:
print("has callback_on_step_end and NO guidance_scale")
image = pipe(
prompt,
num_inference_steps=num_steps,
generator=generator,
callback_on_step_end=callback,
).images[0]
elif not has_callback_on_step_end and not has_guidance_scale:
print("NO callback_on_step_end and NO guidance_scale")
image = pipe(
prompt,
num_inference_steps=num_steps,
generator=generator,
).images[0]
return image
@spaces.GPU(duration=170)
def create_pipeline_logic(prompt_text, model_name):
print(f"starting {model_name}")
progress = gr.Progress(track_tqdm=True)
num_steps = 30
guidance_scale = 7.5 # Example guidance scale, can be adjusted per model
seed = 42
config = MODEL_CONFIGS[model_name]
pipe_class = config["pipeline_class"]
pipe = AutoPipelineForText2Image.from_pretrained(
config["repo_id"],
variant="fp16",
#cache_dir=config["cache_dir"],
torch_dtype=torch.bfloat16
).to("cuda")
image = generate_image_with_progress(
pipe, prompt_text, num_steps=num_steps, guidance_scale=guidance_scale, seed=seed, progress=progress
)
return f"Seed: {seed}", image
def main():
with gr.Blocks() as app:
gr.Markdown("# Dynamic Multiple Model Image Generation")
prompt_text = gr.Textbox(label="Enter prompt")
for model_name, config in MODEL_CONFIGS.items():
with gr.Tab(model_name):
button = gr.Button(f"Run {model_name}")
output = gr.Textbox(label="Status")
img = gr.Image(label=model_name, height=300)
button.click(fn=create_pipeline_logic, inputs=[prompt_text, gr.Text(value= model_name,visible=False)], outputs=[output, img])
app.launch()
if __name__ == "__main__":
main()
|