Spaces:
Paused
Paused
File size: 906 Bytes
fd7e04e 9ae8083 6676090 842df92 fd7e04e 5250b05 08625ae fd7e04e 9ae8083 fd7e04e 9ae8083 842df92 08625ae 842df92 08625ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import streamlit as st
import pandas as pd
import pickle
from utils import create_new_features, normalize, init_new_pred
with open('./trained_model.pkl', 'rb') as file:
model = pickle.load(file)
new_pred = st.text_area('Enter text')
if new_pred:
new_pred = init_new_pred()
new_pred['bedrooms'] = 5
new_pred['bathrooms'] = 3
new_pred['sqft_living'] = 10000
new_pred['sqft_lot'] = 1000
new_pred['floors'] = 2
new_pred['waterfront'] = 1
new_pred['view'] = 3
new_pred['condition'] = 5
new_pred['sqft_above'] = 500
new_pred['sqft_basement'] = 500
new_pred['yr_built'] = 2012
new_pred['yr_renovated'] = 2013
new_pred['city_Bellevue'] = 1
new_pred = pd.DataFrame([new_pred])
new_pred = create_new_features(new_pred)
new_pred = normalize(new_pred)
predicted_price = model.predict(new_pred)
st.json(predicted_price[0][0])
|