Spaces:
Runtime error
Runtime error
import gradio as gr | |
from gradio_client import Client | |
# Initialize the Hugging Face client with the specific model | |
client = Client("ByteDance/Hyper-FLUX-8Steps-LoRA") | |
def generate_image(prompt, height, width, steps, scale, seed): | |
""" | |
Function to generate an image based on the provided prompt and parameters. | |
Args: | |
prompt (str): The text prompt to generate the image. | |
height (int): The height of the generated image. | |
width (int): The width of the generated image. | |
steps (int): Number of inference steps. | |
scale (float): Guidance scale for the image generation. | |
seed (int): Seed for random number generator to ensure reproducibility. | |
Returns: | |
Image: Generated image based on the prompt and parameters. | |
""" | |
try: | |
# Call the predict method of the client with provided parameters | |
result = client.predict( | |
height=height, | |
width=width, | |
steps=steps, | |
scales=scale, | |
prompt=prompt, | |
seed=seed, | |
api_name="/process_image" | |
) | |
return result | |
except Exception as e: | |
return f"An error occurred: {e}" | |
# Define the input components | |
prompt_input = gr.inputs.Textbox( | |
lines=2, | |
placeholder="Enter your prompt here...", | |
label="Prompt" | |
) | |
height_input = gr.inputs.Slider( | |
minimum=256, | |
maximum=2048, | |
step=64, | |
default=1024, | |
label="Image Height" | |
) | |
width_input = gr.inputs.Slider( | |
minimum=256, | |
maximum=2048, | |
step=64, | |
default=1024, | |
label="Image Width" | |
) | |
steps_input = gr.inputs.Slider( | |
minimum=1, | |
maximum=50, | |
step=1, | |
default=8, | |
label="Inference Steps" | |
) | |
scale_input = gr.inputs.Slider( | |
minimum=1.0, | |
maximum=10.0, | |
step=0.1, | |
default=3.5, | |
label="Guidance Scale" | |
) | |
seed_input = gr.inputs.Number( | |
default=3413, | |
label="Seed", | |
precision=0 | |
) | |
# Define the output component | |
image_output = gr.outputs.Image(label="Generated Image") | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=generate_image, | |
inputs=[prompt_input, height_input, width_input, steps_input, scale_input, seed_input], | |
outputs=image_output, | |
title="Hyper-FLUX-8Steps-LoRA Image Generator", | |
description="Generate images from text prompts using the Hyper-FLUX-8Steps-LoRA model.", | |
examples=[ | |
["A serene landscape with mountains and a river", 1024, 1024, 8, 3.5, 42], | |
["A futuristic city skyline at sunset", 1024, 1024, 8, 3.5, 1234], | |
["An abstract painting with vibrant colors", 1024, 1024, 8, 3.5, 5678], | |
], | |
allow_flagging="never" | |
) | |
# Launch the interface | |
if __name__ == "__main__": | |
iface.launch() | |