Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from gradio_client import Client
|
3 |
+
|
4 |
+
# Initialize the Hugging Face client with the specific model
|
5 |
+
client = Client("ByteDance/Hyper-FLUX-8Steps-LoRA")
|
6 |
+
|
7 |
+
def generate_image(prompt, height, width, steps, scale, seed):
|
8 |
+
"""
|
9 |
+
Function to generate an image based on the provided prompt and parameters.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
prompt (str): The text prompt to generate the image.
|
13 |
+
height (int): The height of the generated image.
|
14 |
+
width (int): The width of the generated image.
|
15 |
+
steps (int): Number of inference steps.
|
16 |
+
scale (float): Guidance scale for the image generation.
|
17 |
+
seed (int): Seed for random number generator to ensure reproducibility.
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
Image: Generated image based on the prompt and parameters.
|
21 |
+
"""
|
22 |
+
try:
|
23 |
+
# Call the predict method of the client with provided parameters
|
24 |
+
result = client.predict(
|
25 |
+
height=height,
|
26 |
+
width=width,
|
27 |
+
steps=steps,
|
28 |
+
scales=scale,
|
29 |
+
prompt=prompt,
|
30 |
+
seed=seed,
|
31 |
+
api_name="/process_image"
|
32 |
+
)
|
33 |
+
return result
|
34 |
+
except Exception as e:
|
35 |
+
return f"An error occurred: {e}"
|
36 |
+
|
37 |
+
# Define the input components
|
38 |
+
prompt_input = gr.inputs.Textbox(
|
39 |
+
lines=2,
|
40 |
+
placeholder="Enter your prompt here...",
|
41 |
+
label="Prompt"
|
42 |
+
)
|
43 |
+
|
44 |
+
height_input = gr.inputs.Slider(
|
45 |
+
minimum=256,
|
46 |
+
maximum=2048,
|
47 |
+
step=64,
|
48 |
+
default=1024,
|
49 |
+
label="Image Height"
|
50 |
+
)
|
51 |
+
|
52 |
+
width_input = gr.inputs.Slider(
|
53 |
+
minimum=256,
|
54 |
+
maximum=2048,
|
55 |
+
step=64,
|
56 |
+
default=1024,
|
57 |
+
label="Image Width"
|
58 |
+
)
|
59 |
+
|
60 |
+
steps_input = gr.inputs.Slider(
|
61 |
+
minimum=1,
|
62 |
+
maximum=50,
|
63 |
+
step=1,
|
64 |
+
default=8,
|
65 |
+
label="Inference Steps"
|
66 |
+
)
|
67 |
+
|
68 |
+
scale_input = gr.inputs.Slider(
|
69 |
+
minimum=1.0,
|
70 |
+
maximum=10.0,
|
71 |
+
step=0.1,
|
72 |
+
default=3.5,
|
73 |
+
label="Guidance Scale"
|
74 |
+
)
|
75 |
+
|
76 |
+
seed_input = gr.inputs.Number(
|
77 |
+
default=3413,
|
78 |
+
label="Seed",
|
79 |
+
precision=0
|
80 |
+
)
|
81 |
+
|
82 |
+
# Define the output component
|
83 |
+
image_output = gr.outputs.Image(label="Generated Image")
|
84 |
+
|
85 |
+
# Create the Gradio interface
|
86 |
+
iface = gr.Interface(
|
87 |
+
fn=generate_image,
|
88 |
+
inputs=[prompt_input, height_input, width_input, steps_input, scale_input, seed_input],
|
89 |
+
outputs=image_output,
|
90 |
+
title="Hyper-FLUX-8Steps-LoRA Image Generator",
|
91 |
+
description="Generate images from text prompts using the Hyper-FLUX-8Steps-LoRA model.",
|
92 |
+
examples=[
|
93 |
+
["A serene landscape with mountains and a river", 1024, 1024, 8, 3.5, 42],
|
94 |
+
["A futuristic city skyline at sunset", 1024, 1024, 8, 3.5, 1234],
|
95 |
+
["An abstract painting with vibrant colors", 1024, 1024, 8, 3.5, 5678],
|
96 |
+
],
|
97 |
+
allow_flagging="never"
|
98 |
+
)
|
99 |
+
|
100 |
+
# Launch the interface
|
101 |
+
if __name__ == "__main__":
|
102 |
+
iface.launch()
|