Quazim0t0's picture
Update leaderboard.py
968f2d4 verified
raw
history blame
5.01 kB
"""
Leaderboard module for Dynamic Highscores system.
This module implements the unified leaderboard with tag-based filtering
for displaying all evaluated models.
"""
import os
import json
import pandas as pd
import gradio as gr
import plotly.express as px
import plotly.graph_objects as go
class Leaderboard:
"""Manages the unified leaderboard with filtering capabilities."""
def __init__(self, db_manager):
"""Initialize the leaderboard manager.
Args:
db_manager: Database manager instance
"""
self.db_manager = db_manager
self.model_tags = ["All", "Merge", "Agent", "Reasoning", "Coding", "General", "Specialized", "Instruction", "Chat"]
# Define color scheme for tags
self.tag_colors = {
"Merge": "#FF6B6B",
"Agent": "#4ECDC4",
"Reasoning": "#FFD166",
"Coding": "#6B5B95",
"General": "#88D8B0",
"Specialized": "#FF8C42",
"Instruction": "#5D9CEC",
"Chat": "#AC92EB"
}
def get_leaderboard_data(self, tag=None, benchmark_id=None):
"""Get leaderboard data, optionally filtered by tag or benchmark.
Args:
tag: Model tag to filter by (None for all)
benchmark_id: Benchmark ID to filter by (None for all)
Returns:
pd.DataFrame: Leaderboard data
"""
# Get evaluation results from database
if tag and tag != "All":
df = self.db_manager.get_leaderboard_df(tag=tag, benchmark_id=benchmark_id)
else:
df = self.db_manager.get_leaderboard_df(benchmark_id=benchmark_id)
return df
def format_leaderboard_for_display(self, df):
"""Format leaderboard data for display.
Args:
df: Leaderboard DataFrame
Returns:
pd.DataFrame: Formatted leaderboard for display
"""
if df.empty:
return pd.DataFrame(columns=['Model', 'Benchmark', 'Tag', 'Score', 'Completed'])
# Select and rename columns for display
display_df = df[['model_name', 'benchmark_name', 'tag', 'score', 'completed_at']].copy()
display_df.columns = ['Model', 'Benchmark', 'Tag', 'Score', 'Completed']
# Round score to 2 decimal places
display_df['Score'] = display_df['Score'].round(2)
# Sort by score (descending)
display_df = display_df.sort_values('Score', ascending=False)
return display_df
def create_performance_chart(self, df, chart_type="bar"):
"""Create a performance chart from leaderboard data.
Args:
df: Leaderboard DataFrame
chart_type: Type of chart to create ("bar" or "scatter")
Returns:
plotly.graph_objects.Figure: Performance chart
"""
if df.empty:
# Return empty figure
fig = go.Figure()
fig.update_layout(
title="No data available",
xaxis_title="Model",
yaxis_title="Score"
)
return fig
# Prepare data for visualization
plot_df = df[['model_name', 'benchmark_name', 'tag', 'score']].copy()
plot_df.columns = ['Model', 'Benchmark', 'Tag', 'Score']
# Create chart based on type
if chart_type == "scatter":
fig = px.scatter(
plot_df,
x="Model",
y="Score",
color="Tag",
symbol="Benchmark",
size="Score",
hover_data=["Model", "Benchmark", "Score"],
color_discrete_map=self.tag_colors
)
else: # Default to bar chart
fig = px.bar(
plot_df,
x="Model",
y="Score",
color="Tag",
barmode="group",
hover_data=["Model", "Benchmark", "Score"],
color_discrete_map=self.tag_colors
)
# Customize layout
fig.update_layout(
title="Model Performance Comparison",
xaxis_title="Model",
yaxis_title="Score",
legend_title="Tag",
font=dict(size=12)
)
return fig
def create_tag_distribution_chart(self, df):
"""Create a chart showing distribution of models by tag.
Args:
df: Leaderboard DataFrame
Returns:
plotly.graph_objects.Figure: Tag distribution chart
"""
if df.empty:
# Return empty figure
fig = go.Figure()
fig.update_layout(
title="No data available",
xaxis_title="Tag",
yaxis_title="Count"
)
return fig