File size: 5,009 Bytes
d1078a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
968f2d4
d1078a3
968f2d4
d1078a3
 
 
 
 
 
 
 
 
 
 
 
 
968f2d4
d1078a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
968f2d4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
"""
Leaderboard module for Dynamic Highscores system.

This module implements the unified leaderboard with tag-based filtering
for displaying all evaluated models.
"""

import os
import json
import pandas as pd
import gradio as gr
import plotly.express as px
import plotly.graph_objects as go

class Leaderboard:
    """Manages the unified leaderboard with filtering capabilities."""
    
    def __init__(self, db_manager):
        """Initialize the leaderboard manager.
        
        Args:
            db_manager: Database manager instance
        """
        self.db_manager = db_manager
        self.model_tags = ["All", "Merge", "Agent", "Reasoning", "Coding", "General", "Specialized", "Instruction", "Chat"]
        
        # Define color scheme for tags
        self.tag_colors = {
            "Merge": "#FF6B6B",
            "Agent": "#4ECDC4",
            "Reasoning": "#FFD166",
            "Coding": "#6B5B95",
            "General": "#88D8B0",
            "Specialized": "#FF8C42",
            "Instruction": "#5D9CEC",
            "Chat": "#AC92EB"
        }
    
    def get_leaderboard_data(self, tag=None, benchmark_id=None):
        """Get leaderboard data, optionally filtered by tag or benchmark.
        
        Args:
            tag: Model tag to filter by (None for all)
            benchmark_id: Benchmark ID to filter by (None for all)
            
        Returns:
            pd.DataFrame: Leaderboard data
        """
        # Get evaluation results from database
        if tag and tag != "All":
            df = self.db_manager.get_leaderboard_df(tag=tag, benchmark_id=benchmark_id)
        else:
            df = self.db_manager.get_leaderboard_df(benchmark_id=benchmark_id)
        
        return df
    
    def format_leaderboard_for_display(self, df):
        """Format leaderboard data for display.
        
        Args:
            df: Leaderboard DataFrame
            
        Returns:
            pd.DataFrame: Formatted leaderboard for display
        """
        if df.empty:
            return pd.DataFrame(columns=['Model', 'Benchmark', 'Tag', 'Score', 'Completed'])
        
        # Select and rename columns for display
        display_df = df[['model_name', 'benchmark_name', 'tag', 'score', 'completed_at']].copy()
        display_df.columns = ['Model', 'Benchmark', 'Tag', 'Score', 'Completed']
        
        # Round score to 2 decimal places
        display_df['Score'] = display_df['Score'].round(2)
        
        # Sort by score (descending)
        display_df = display_df.sort_values('Score', ascending=False)
        
        return display_df
    
    def create_performance_chart(self, df, chart_type="bar"):
        """Create a performance chart from leaderboard data.
        
        Args:
            df: Leaderboard DataFrame
            chart_type: Type of chart to create ("bar" or "scatter")
            
        Returns:
            plotly.graph_objects.Figure: Performance chart
        """
        if df.empty:
            # Return empty figure
            fig = go.Figure()
            fig.update_layout(
                title="No data available",
                xaxis_title="Model",
                yaxis_title="Score"
            )
            return fig
        
        # Prepare data for visualization
        plot_df = df[['model_name', 'benchmark_name', 'tag', 'score']].copy()
        plot_df.columns = ['Model', 'Benchmark', 'Tag', 'Score']
        
        # Create chart based on type
        if chart_type == "scatter":
            fig = px.scatter(
                plot_df,
                x="Model",
                y="Score",
                color="Tag",
                symbol="Benchmark",
                size="Score",
                hover_data=["Model", "Benchmark", "Score"],
                color_discrete_map=self.tag_colors
            )
        else:  # Default to bar chart
            fig = px.bar(
                plot_df,
                x="Model",
                y="Score",
                color="Tag",
                barmode="group",
                hover_data=["Model", "Benchmark", "Score"],
                color_discrete_map=self.tag_colors
            )
        
        # Customize layout
        fig.update_layout(
            title="Model Performance Comparison",
            xaxis_title="Model",
            yaxis_title="Score",
            legend_title="Tag",
            font=dict(size=12)
        )
        
        return fig
    
    def create_tag_distribution_chart(self, df):
        """Create a chart showing distribution of models by tag.
        
        Args:
            df: Leaderboard DataFrame
            
        Returns:
            plotly.graph_objects.Figure: Tag distribution chart
        """
        if df.empty:
            # Return empty figure
            fig = go.Figure()
            fig.update_layout(
                title="No data available",
                xaxis_title="Tag",
                yaxis_title="Count"
            )
            return fig