CSVAgent / app.py
Quazim0t0's picture
Update app.py
811c7ec verified
raw
history blame
8.59 kB
import os
import gradio as gr
from sqlalchemy import text
from smolagents import tool, CodeAgent, HfApiModel
import spaces
import pandas as pd
from database import (
engine,
create_dynamic_table,
clear_database,
insert_rows_into_table,
get_table_schema
)
def process_sql_file(file_path):
"""
Process an SQL file and execute its contents.
"""
try:
# Read the SQL file
with open(file_path, 'r') as file:
sql_content = file.read()
# Split into individual statements
statements = sql_content.split(';')
# Clear existing database
clear_database()
# Execute each statement
with engine.begin() as conn:
for statement in statements:
if statement.strip(): # Skip empty statements
conn.execute(text(statement))
return True, "SQL file successfully executed! Proceeding to query interface..."
except Exception as e:
return False, f"Error processing SQL file: {str(e)}"
def process_csv_file(file_path):
"""
Process a CSV file and load it into the database.
"""
try:
# Read the CSV file
df = pd.read_csv(file_path)
if len(df.columns) == 0:
return False, "Error: File contains no columns"
# Clear existing database and create new table
clear_database()
table = create_dynamic_table(df)
# Convert DataFrame to list of dictionaries and insert
records = df.to_dict('records')
insert_rows_into_table(records, table)
return True, "CSV file successfully loaded! Proceeding to query interface..."
except Exception as e:
return False, f"Error processing CSV file: {str(e)}"
def process_uploaded_file(file):
"""
Process the uploaded file (either SQL or CSV).
"""
try:
if file is None:
return False, "Please upload a file."
# Get file extension
file_ext = os.path.splitext(file)[1].lower()
if file_ext == '.sql':
return process_sql_file(file)
elif file_ext == '.csv':
return process_csv_file(file)
else:
return False, "Error: Unsupported file type. Please upload either a .sql or .csv file."
except Exception as e:
return False, f"Error processing file: {str(e)}"
def get_data_table():
"""
Fetches all data from the current table and returns it as a Pandas DataFrame.
"""
try:
# Get list of tables
with engine.connect() as con:
tables = con.execute(text(
"SELECT name FROM sqlite_master WHERE type='table' AND name NOT LIKE 'sqlite_%'"
)).fetchall()
if not tables:
return pd.DataFrame()
# Use the first table found
table_name = tables[0][0]
with engine.connect() as con:
result = con.execute(text(f"SELECT * FROM {table_name}"))
rows = result.fetchall()
if not rows:
return pd.DataFrame()
columns = result.keys()
df = pd.DataFrame(rows, columns=columns)
return df
except Exception as e:
return pd.DataFrame({"Error": [str(e)]})
@tool
def sql_engine(query: str) -> str:
"""
Executes an SQL query and returns formatted results.
Args:
query: The SQL query string to execute on the database. Must be a valid SELECT query.
Returns:
str: The formatted query results as a string.
"""
try:
with engine.connect() as con:
rows = con.execute(text(query)).fetchall()
if not rows:
return "No results found."
if len(rows) == 1 and len(rows[0]) == 1:
return str(rows[0][0])
return "\n".join([", ".join(map(str, row)) for row in rows])
except Exception as e:
return f"Error: {str(e)}"
agent = CodeAgent(
tools=[sql_engine],
model=HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"),
)
def query_sql(user_query: str) -> str:
"""
Converts natural language input to an SQL query using CodeAgent.
"""
schema = get_table_schema()
if not schema:
return "Error: No data table exists. Please upload a file first."
schema_info = (
f"The database has the following schema:\n"
f"{schema}\n"
"Generate a valid SQL SELECT query using ONLY these column names.\n"
"DO NOT explain your reasoning, and DO NOT return anything other than the SQL query itself."
)
generated_sql = agent.run(f"{schema_info} Convert this request into SQL: {user_query}")
if not isinstance(generated_sql, str):
return f"{generated_sql}"
if not generated_sql.strip().lower().startswith(("select", "show", "pragma")):
return "Error: Only SELECT queries are allowed."
result = sql_engine(generated_sql)
try:
float_result = float(result)
return f"{float_result:.2f}"
except ValueError:
return result
with gr.Blocks() as demo:
# Create both interfaces at the top level
upload_interface = gr.Blocks()
query_interface = gr.Blocks(visible=False)
# Create upload interface content
with upload_interface:
gr.Markdown("""
# Data Query Interface
Upload your data file to begin.
### Supported File Types:
- SQL (.sql): SQL file containing CREATE TABLE and INSERT statements
- CSV (.csv): CSV file with headers that will be automatically converted to a table
### CSV Requirements:
- Must include headers
- First column will be used as the primary key
- Column types will be automatically detected
### SQL Requirements:
- Must contain valid SQL statements
- Statements must be separated by semicolons
- Should include CREATE TABLE and data insertion statements
""")
file_input = gr.File(
label="Upload Data File",
file_types=[".csv", ".sql"],
type="filepath"
)
status = gr.Textbox(label="Status", interactive=False)
# Create query interface content
with query_interface:
gr.Markdown("""
## Data Query Interface
Enter your questions about the data in natural language.
The AI will convert your questions into SQL queries.
""")
with gr.Row():
with gr.Column(scale=1):
user_input = gr.Textbox(label="Ask a question about the data")
query_output = gr.Textbox(label="Result")
with gr.Column(scale=2):
gr.Markdown("### Current Data")
data_table = gr.Dataframe(
value=get_data_table(),
label="Data Table",
interactive=False
)
schema_display = gr.Markdown(value="Loading schema...")
def update_schema():
schema = get_table_schema()
if schema:
return f"### Current Schema:\n```\n{schema}\n```"
return "No data loaded"
user_input.change(
fn=query_sql,
inputs=[user_input],
outputs=[query_output]
)
with gr.Row():
refresh_table_btn = gr.Button("Refresh Table")
refresh_schema_btn = gr.Button("Refresh Schema")
refresh_table_btn.click(
fn=get_data_table,
outputs=[data_table]
)
refresh_schema_btn.click(
fn=update_schema,
outputs=[schema_display]
)
query_interface.load(
fn=update_schema,
outputs=[schema_display]
)
def handle_upload(file):
success, message = process_uploaded_file(file)
if success:
return message, gr.update(visible=False), gr.update(visible=True)
return message, gr.update(visible=True), gr.update(visible=False)
file_input.upload(
fn=handle_upload,
inputs=[file_input],
outputs=[status, upload_interface, query_interface]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)