Spaces:
Build error
Build error
File size: 8,586 Bytes
6a0ec6a 91561ce 6a0ec6a 91561ce 1767e22 91561ce e465450 9002697 e465450 28200f6 5a55ea7 e465450 91561ce e465450 91561ce e465450 91561ce e465450 91561ce e465450 5a55ea7 91561ce 28200f6 91561ce 28200f6 91561ce 28200f6 91561ce e465450 91561ce e465450 91561ce 28200f6 91561ce 5a55ea7 91561ce 28200f6 91561ce bf0142b fed63c4 28200f6 20e319d 91561ce 20e319d 5a55ea7 91561ce 5a55ea7 91561ce 20e319d 91561ce 28200f6 91561ce 28200f6 e566b0f 91561ce fed63c4 28200f6 91561ce e465450 91561ce 5a55ea7 91561ce fed63c4 811c7ec 91561ce 5a55ea7 811c7ec 6a0ec6a e566b0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import os
import gradio as gr
from sqlalchemy import text
from smolagents import tool, CodeAgent, HfApiModel
import spaces
import pandas as pd
from database import (
engine,
create_dynamic_table,
clear_database,
insert_rows_into_table,
get_table_schema
)
def process_sql_file(file_path):
"""
Process an SQL file and execute its contents.
"""
try:
# Read the SQL file
with open(file_path, 'r') as file:
sql_content = file.read()
# Split into individual statements
statements = sql_content.split(';')
# Clear existing database
clear_database()
# Execute each statement
with engine.begin() as conn:
for statement in statements:
if statement.strip(): # Skip empty statements
conn.execute(text(statement))
return True, "SQL file successfully executed! Proceeding to query interface..."
except Exception as e:
return False, f"Error processing SQL file: {str(e)}"
def process_csv_file(file_path):
"""
Process a CSV file and load it into the database.
"""
try:
# Read the CSV file
df = pd.read_csv(file_path)
if len(df.columns) == 0:
return False, "Error: File contains no columns"
# Clear existing database and create new table
clear_database()
table = create_dynamic_table(df)
# Convert DataFrame to list of dictionaries and insert
records = df.to_dict('records')
insert_rows_into_table(records, table)
return True, "CSV file successfully loaded! Proceeding to query interface..."
except Exception as e:
return False, f"Error processing CSV file: {str(e)}"
def process_uploaded_file(file):
"""
Process the uploaded file (either SQL or CSV).
"""
try:
if file is None:
return False, "Please upload a file."
# Get file extension
file_ext = os.path.splitext(file)[1].lower()
if file_ext == '.sql':
return process_sql_file(file)
elif file_ext == '.csv':
return process_csv_file(file)
else:
return False, "Error: Unsupported file type. Please upload either a .sql or .csv file."
except Exception as e:
return False, f"Error processing file: {str(e)}"
def get_data_table():
"""
Fetches all data from the current table and returns it as a Pandas DataFrame.
"""
try:
# Get list of tables
with engine.connect() as con:
tables = con.execute(text(
"SELECT name FROM sqlite_master WHERE type='table' AND name NOT LIKE 'sqlite_%'"
)).fetchall()
if not tables:
return pd.DataFrame()
# Use the first table found
table_name = tables[0][0]
with engine.connect() as con:
result = con.execute(text(f"SELECT * FROM {table_name}"))
rows = result.fetchall()
if not rows:
return pd.DataFrame()
columns = result.keys()
df = pd.DataFrame(rows, columns=columns)
return df
except Exception as e:
return pd.DataFrame({"Error": [str(e)]})
@tool
def sql_engine(query: str) -> str:
"""
Executes an SQL query and returns formatted results.
Args:
query: The SQL query string to execute on the database. Must be a valid SELECT query.
Returns:
str: The formatted query results as a string.
"""
try:
with engine.connect() as con:
rows = con.execute(text(query)).fetchall()
if not rows:
return "No results found."
if len(rows) == 1 and len(rows[0]) == 1:
return str(rows[0][0])
return "\n".join([", ".join(map(str, row)) for row in rows])
except Exception as e:
return f"Error: {str(e)}"
agent = CodeAgent(
tools=[sql_engine],
model=HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"),
)
def query_sql(user_query: str) -> str:
"""
Converts natural language input to an SQL query using CodeAgent.
"""
schema = get_table_schema()
if not schema:
return "Error: No data table exists. Please upload a file first."
schema_info = (
f"The database has the following schema:\n"
f"{schema}\n"
"Generate a valid SQL SELECT query using ONLY these column names.\n"
"DO NOT explain your reasoning, and DO NOT return anything other than the SQL query itself."
)
generated_sql = agent.run(f"{schema_info} Convert this request into SQL: {user_query}")
if not isinstance(generated_sql, str):
return f"{generated_sql}"
if not generated_sql.strip().lower().startswith(("select", "show", "pragma")):
return "Error: Only SELECT queries are allowed."
result = sql_engine(generated_sql)
try:
float_result = float(result)
return f"{float_result:.2f}"
except ValueError:
return result
with gr.Blocks() as demo:
# Create both interfaces at the top level
upload_interface = gr.Blocks()
query_interface = gr.Blocks(visible=False)
# Create upload interface content
with upload_interface:
gr.Markdown("""
# Data Query Interface
Upload your data file to begin.
### Supported File Types:
- SQL (.sql): SQL file containing CREATE TABLE and INSERT statements
- CSV (.csv): CSV file with headers that will be automatically converted to a table
### CSV Requirements:
- Must include headers
- First column will be used as the primary key
- Column types will be automatically detected
### SQL Requirements:
- Must contain valid SQL statements
- Statements must be separated by semicolons
- Should include CREATE TABLE and data insertion statements
""")
file_input = gr.File(
label="Upload Data File",
file_types=[".csv", ".sql"],
type="filepath"
)
status = gr.Textbox(label="Status", interactive=False)
# Create query interface content
with query_interface:
gr.Markdown("""
## Data Query Interface
Enter your questions about the data in natural language.
The AI will convert your questions into SQL queries.
""")
with gr.Row():
with gr.Column(scale=1):
user_input = gr.Textbox(label="Ask a question about the data")
query_output = gr.Textbox(label="Result")
with gr.Column(scale=2):
gr.Markdown("### Current Data")
data_table = gr.Dataframe(
value=get_data_table(),
label="Data Table",
interactive=False
)
schema_display = gr.Markdown(value="Loading schema...")
def update_schema():
schema = get_table_schema()
if schema:
return f"### Current Schema:\n```\n{schema}\n```"
return "No data loaded"
user_input.change(
fn=query_sql,
inputs=[user_input],
outputs=[query_output]
)
with gr.Row():
refresh_table_btn = gr.Button("Refresh Table")
refresh_schema_btn = gr.Button("Refresh Schema")
refresh_table_btn.click(
fn=get_data_table,
outputs=[data_table]
)
refresh_schema_btn.click(
fn=update_schema,
outputs=[schema_display]
)
query_interface.load(
fn=update_schema,
outputs=[schema_display]
)
def handle_upload(file):
success, message = process_uploaded_file(file)
if success:
return message, gr.update(visible=False), gr.update(visible=True)
return message, gr.update(visible=True), gr.update(visible=False)
file_input.upload(
fn=handle_upload,
inputs=[file_input],
outputs=[status, upload_interface, query_interface]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=True) |