QinLei086's picture
Upload 28 files
15acbf0 verified
raw
history blame
17.2 kB
import inspect
from typing import List, Optional, Tuple, Union
import torch
from diffusers.models import UNet2DModel, VQModel
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
import copy
class LDMPipeline(DiffusionPipeline):
r"""
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Parameters:
vae ([`VQModel`]):
Vector-quantized (VQ) Model to encode and decode images to and from latent representations.
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
[`DDIMScheduler`] is to be used in combination with `unet` to denoise the encoded image latents.
"""
def __init__(self, vae: VQModel, unet: UNet2DModel, scheduler: DDIMScheduler, torch_dtype=torch.float16):
super().__init__()
self.register_modules(vae=vae, unet=unet, scheduler=scheduler)
self.torch_dtype = torch_dtype
@torch.no_grad()
def __call__(
self,
batch_size: int = 8,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
eta: float = 0.0,
num_inference_steps: int = 1000,
output_type: Optional[str] = "pil",
return_dict: bool = True,
**kwargs,
) -> Union[Tuple, ImagePipelineOutput]:
r"""
Args:
batch_size (`int`, *optional*, defaults to 1):
Number of images to generate.
generator (`torch.Generator`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.model.ImagePipelineOutput`] if `return_dict` is
True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.
"""
if not isinstance(self.unet.config.sample_size,tuple):
self.unet.config.sample_size = (self.unet.config.sample_size,self.unet.config.sample_size)
latents = randn_tensor(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1]),
generator=generator,
)
latents = latents.to(self.device).type(self.torch_dtype)
# scale the initial noise by the standard deviation required by the scheduler (need to check)
latents = latents * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(num_inference_steps)
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_kwargs = {}
if accepts_eta:
extra_kwargs["eta"] = eta
for t in self.progress_bar(self.scheduler.timesteps):
latent_model_input = self.scheduler.scale_model_input(latents, t)
# predict the noise residual
noise_prediction = self.unet(latent_model_input, t).sample
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_prediction, t, latents, **extra_kwargs).prev_sample
# decode the image latents with the VAE
latents /= self.vae.config.scaling_factor#(0.18215)
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
class SDMLDMPipeline(DiffusionPipeline):
r"""
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Parameters:
vae ([`VQModel`]):
Vector-quantized (VQ) Model to encode and decode images to and from latent representations.
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
[`DDIMScheduler`] is to be used in combination with `unet` to denoise the encoded image latents.
"""
def __init__(self, vae: VQModel, unet: UNet2DModel, scheduler: DDIMScheduler, torch_dtype=torch.float16, resolution=512, resolution_type="city"):
super().__init__()
self.register_modules(vae=vae, unet=unet, scheduler=scheduler)
self.torch_dtype = torch_dtype
self.resolution = resolution
self.resolution_type = resolution_type
@torch.no_grad()
def __call__(
self,
segmap = None,
batch_size: int = 8,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
eta: float = 0.0,
num_inference_steps: int = 1000,
output_type: Optional[str] = "pil",
return_dict: bool = True,
every_step_save: int = None,
s: int = 1,
**kwargs,
) -> Union[Tuple, ImagePipelineOutput]:
r"""
Args:
batch_size (`int`, *optional*, defaults to 1):
Number of images to generate.
generator (`torch.Generator`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.model.ImagePipelineOutput`] if `return_dict` is
True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.
"""
# self.unet.config.sample_size = (64, 64) # (135,180)
# self.unet.config.sample_size = (135,180)
if self.resolution_type == "crack":
self.unet.config.sample_size = (64,64)
elif self.resolution_type == "crack_256":
self.unet.config.sample_size = (256,256)
else:
sc = 1080 // self.resolution
latent_size = (self.resolution // 4, 1440 // (sc*4))
self.unet.config.sample_size = latent_size
#
if not isinstance(self.unet.config.sample_size, tuple):
self.unet.config.sample_size = (self.unet.config.sample_size, self.unet.config.sample_size)
if segmap is None:
print("Didn't inpute any segmap, use the empty as the input")
segmap = torch.zeros(batch_size,self.unet.config.segmap_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1])
segmap = segmap.to(self.device).type(self.torch_dtype)
latents = randn_tensor(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1]),
generator=generator,
)
latents = latents.to(self.device).type(self.torch_dtype)
# scale the initial noise by the standard deviation required by the scheduler (need to check)
latents = latents * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(num_inference_steps=num_inference_steps)
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_kwargs = {}
if accepts_eta:
extra_kwargs["eta"] = eta
step_latent = []
learn_sigma = True if hasattr(self.scheduler, "variance_type") else False
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
latent_model_input = self.scheduler.scale_model_input(latents, t)
# predict the noise residual
noise_prediction = self.unet(latent_model_input, segmap, t).sample
# compute the previous noisy sample x_t -> x_t-1
if learn_sigma and "learn" in self.scheduler.variance_type:
model_pred, var_pred = torch.split(noise_prediction, latents.shape[1], dim=1)
else:
model_pred = noise_prediction
if s > 1.0:
model_output_zero = self.unet(latent_model_input, torch.zeros_like(segmap), t).sample
if learn_sigma and "learn" in self.scheduler.variance_type:
model_output_zero,_ = torch.split(model_output_zero, latents.shape[1], dim=1)
model_pred = model_pred + s * (model_pred - model_output_zero)
if learn_sigma and "learn" in self.scheduler.variance_type:
recombined = torch.cat((model_pred, var_pred), dim=1)
# when apply different scheduler, mean only !!
if learn_sigma and "learn" in self.scheduler.variance_type:
latents = self.scheduler.step(recombined, t, latents, **extra_kwargs).prev_sample
else:
latents = self.scheduler.step(noise_prediction, t, latents, **extra_kwargs).prev_sample
if every_step_save is not None:
if (i+1) % every_step_save == 0:
step_latent.append(copy.deepcopy(latents))
# decode the image latents with the VAE
if every_step_save is not None:
image = []
for i, l in enumerate(step_latent):
l /= self.vae.config.scaling_factor # (0.18215)
#latents /= 7.706491063029163
l = self.vae.decode(l, segmap)
l = (l / 2 + 0.5).clamp(0, 1)
l = l.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
l = self.numpy_to_pil(l)
image.append(l)
else:
latents /= self.vae.config.scaling_factor#(0.18215)
#latents /= 7.706491063029163
# image = self.vae.decode(latents, segmap).sample
image = self.vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
class SDMPipeline(DiffusionPipeline):
r"""
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Parameters:
vae ([`VQModel`]):
Vector-quantized (VQ) Model to encode and decode images to and from latent representations.
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
[`DDIMScheduler`] is to be used in combination with `unet` to denoise the encoded image latents.
"""
def __init__(self, unet: UNet2DModel, scheduler: DDIMScheduler, torch_dtype=torch.float16, vae=None):
super().__init__()
self.register_modules(unet=unet, scheduler=scheduler)
self.torch_dtype = torch_dtype
@torch.no_grad()
def __call__(
self,
segmap = None,
batch_size: int = 8,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
eta: float = 0.0,
num_inference_steps: int = 1000,
output_type: Optional[str] = "pil",
return_dict: bool = True,
s: int = 1,
**kwargs,
) -> Union[Tuple, ImagePipelineOutput]:
r"""
Args:
batch_size (`int`, *optional*, defaults to 1):
Number of images to generate.
generator (`torch.Generator`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.model.ImagePipelineOutput`] if `return_dict` is
True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.
"""
self.unet.config.sample_size = (270,360)
if not isinstance(self.unet.config.sample_size, tuple):
self.unet.config.sample_size = (self.unet.config.sample_size, self.unet.config.sample_size)
if segmap is None:
print("Didn't inpute any segmap, use the empty as the input")
segmap = torch.zeros(batch_size,self.unet.config.segmap_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1])
segmap = segmap.to(self.device).type(self.torch_dtype)
latents = randn_tensor(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1]),
generator=generator,
)
latents = latents.to(self.device).type(self.torch_dtype)
# scale the initial noise by the standard deviation required by the scheduler (need to check)
latents = latents * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(num_inference_steps)
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_kwargs = {}
if accepts_eta:
extra_kwargs["eta"] = eta
for t in self.progress_bar(self.scheduler.timesteps):
latent_model_input = self.scheduler.scale_model_input(latents, t)
# predict the noise residual
noise_prediction = self.unet(latent_model_input, segmap, t).sample
#noise_prediction = noise_prediction[]
if s > 1.0:
model_output_zero = self.unet(latent_model_input, torch.zeros_like(segmap), t).sample
noise_prediction[:, :3] = model_output_zero[:, :3] + s * (noise_prediction[:, :3] - model_output_zero[:, :3])
#noise_prediction = noise_prediction[:, :3]
# compute the previous noisy sample x_t -> x_t-1
#breakpoint()
latents = self.scheduler.step(noise_prediction, t, latents, **extra_kwargs).prev_sample
# decode the image latents with the VAE
# latents /= self.vae.config.scaling_factor#(0.18215)
# image = self.vae.decode(latents).sample
image = latents
#image = (image + 1) / 2.0
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)