File size: 17,187 Bytes
15acbf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import inspect
from typing import List, Optional, Tuple, Union

import torch

from diffusers.models import UNet2DModel, VQModel
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
import copy

class LDMPipeline(DiffusionPipeline):
    r"""
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Parameters:
        vae ([`VQModel`]):
            Vector-quantized (VQ) Model to encode and decode images to and from latent representations.
        unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            [`DDIMScheduler`] is to be used in combination with `unet` to denoise the encoded image latents.
    """

    def __init__(self, vae: VQModel, unet: UNet2DModel, scheduler: DDIMScheduler, torch_dtype=torch.float16):
        super().__init__()
        self.register_modules(vae=vae, unet=unet, scheduler=scheduler)
        self.torch_dtype = torch_dtype

    @torch.no_grad()
    def __call__(
        self,
        batch_size: int = 8,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        eta: float = 0.0,
        num_inference_steps: int = 1000,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        **kwargs,
    ) -> Union[Tuple, ImagePipelineOutput]:
        r"""
        Args:
            batch_size (`int`, *optional*, defaults to 1):
                Number of images to generate.
            generator (`torch.Generator`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.

        Returns:
            [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.model.ImagePipelineOutput`] if `return_dict` is
            True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.
        """
        if not isinstance(self.unet.config.sample_size,tuple):
            self.unet.config.sample_size = (self.unet.config.sample_size,self.unet.config.sample_size)

        latents = randn_tensor(
            (batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1]),
            generator=generator,
        )
        latents = latents.to(self.device).type(self.torch_dtype)

        # scale the initial noise by the standard deviation required by the scheduler (need to check)
        latents = latents * self.scheduler.init_noise_sigma

        self.scheduler.set_timesteps(num_inference_steps)

        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())

        extra_kwargs = {}
        if accepts_eta:
            extra_kwargs["eta"] = eta

        for t in self.progress_bar(self.scheduler.timesteps):
            latent_model_input = self.scheduler.scale_model_input(latents, t)
            # predict the noise residual
            noise_prediction = self.unet(latent_model_input, t).sample
            # compute the previous noisy sample x_t -> x_t-1
            latents = self.scheduler.step(noise_prediction, t, latents, **extra_kwargs).prev_sample

        # decode the image latents with the VAE
        latents /= self.vae.config.scaling_factor#(0.18215)
        image = self.vae.decode(latents).sample

        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)


class SDMLDMPipeline(DiffusionPipeline):
    r"""
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Parameters:
        vae ([`VQModel`]):
            Vector-quantized (VQ) Model to encode and decode images to and from latent representations.
        unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            [`DDIMScheduler`] is to be used in combination with `unet` to denoise the encoded image latents.
    """

    def __init__(self, vae: VQModel, unet: UNet2DModel, scheduler: DDIMScheduler, torch_dtype=torch.float16, resolution=512, resolution_type="city"):
        super().__init__()
        self.register_modules(vae=vae, unet=unet, scheduler=scheduler)
        self.torch_dtype = torch_dtype
        self.resolution = resolution
        self.resolution_type = resolution_type
    @torch.no_grad()
    def __call__(
        self,
        segmap = None,
        batch_size: int = 8,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        eta: float = 0.0,
        num_inference_steps: int = 1000,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        every_step_save: int = None,
        s: int = 1,
        **kwargs,
    ) -> Union[Tuple, ImagePipelineOutput]:
        r"""
        Args:
            batch_size (`int`, *optional*, defaults to 1):
                Number of images to generate.
            generator (`torch.Generator`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.

        Returns:
            [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.model.ImagePipelineOutput`] if `return_dict` is
            True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.
        """
        # self.unet.config.sample_size = (64, 64) # (135,180)
        # self.unet.config.sample_size = (135,180)
        if self.resolution_type == "crack":
            self.unet.config.sample_size = (64,64)
        elif self.resolution_type == "crack_256":
            self.unet.config.sample_size = (256,256)
        else:
            sc = 1080 // self.resolution
            latent_size = (self.resolution // 4, 1440 // (sc*4))
            self.unet.config.sample_size = latent_size
        # 
        if not isinstance(self.unet.config.sample_size, tuple):
            self.unet.config.sample_size = (self.unet.config.sample_size, self.unet.config.sample_size)

        if segmap is None:
            print("Didn't inpute any segmap, use the empty as the input")
            segmap = torch.zeros(batch_size,self.unet.config.segmap_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1])
        segmap = segmap.to(self.device).type(self.torch_dtype)
        latents = randn_tensor(
            (batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1]),
            generator=generator,
        )
        latents = latents.to(self.device).type(self.torch_dtype)

        # scale the initial noise by the standard deviation required by the scheduler (need to check)
        latents = latents * self.scheduler.init_noise_sigma

        self.scheduler.set_timesteps(num_inference_steps=num_inference_steps)

        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())

        extra_kwargs = {}
        if accepts_eta:
            extra_kwargs["eta"] = eta

        step_latent = []
        learn_sigma = True if hasattr(self.scheduler, "variance_type") else False
        for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
    
            latent_model_input = self.scheduler.scale_model_input(latents, t)
            # predict the noise residual
            noise_prediction = self.unet(latent_model_input, segmap, t).sample
            # compute the previous noisy sample x_t -> x_t-1
            

            if learn_sigma and "learn" in self.scheduler.variance_type:
                model_pred, var_pred = torch.split(noise_prediction, latents.shape[1], dim=1)
            else:
                model_pred = noise_prediction
            if s > 1.0:
                model_output_zero = self.unet(latent_model_input, torch.zeros_like(segmap), t).sample
                if learn_sigma and "learn" in self.scheduler.variance_type:
                    model_output_zero,_ = torch.split(model_output_zero, latents.shape[1], dim=1)
                model_pred = model_pred + s * (model_pred - model_output_zero)
                if learn_sigma and "learn" in self.scheduler.variance_type:
                    recombined = torch.cat((model_pred, var_pred), dim=1)
            # when apply different scheduler, mean only !!
            if learn_sigma and "learn" in self.scheduler.variance_type:
                latents = self.scheduler.step(recombined, t, latents, **extra_kwargs).prev_sample
            else:
                latents = self.scheduler.step(noise_prediction, t, latents, **extra_kwargs).prev_sample

            if every_step_save is not None:
                if (i+1) % every_step_save == 0:
                    step_latent.append(copy.deepcopy(latents))

        # decode the image latents with the VAE
        if every_step_save is not None:
            image = []
            for i, l in enumerate(step_latent):
                l /= self.vae.config.scaling_factor  # (0.18215)
                #latents /= 7.706491063029163
                l = self.vae.decode(l, segmap)
                l = (l / 2 + 0.5).clamp(0, 1)
                l = l.cpu().permute(0, 2, 3, 1).numpy()
                if output_type == "pil":
                    l = self.numpy_to_pil(l)
                image.append(l)
        else:
            latents /= self.vae.config.scaling_factor#(0.18215)
            #latents /= 7.706491063029163
            # image = self.vae.decode(latents, segmap).sample
            image = self.vae.decode(latents, return_dict=False)[0]
            image = (image / 2 + 0.5).clamp(0, 1)
            image = image.cpu().permute(0, 2, 3, 1).numpy()
            if output_type == "pil":
                image = self.numpy_to_pil(image)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)


class SDMPipeline(DiffusionPipeline):
    r"""
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Parameters:
        vae ([`VQModel`]):
            Vector-quantized (VQ) Model to encode and decode images to and from latent representations.
        unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            [`DDIMScheduler`] is to be used in combination with `unet` to denoise the encoded image latents.
    """

    def __init__(self, unet: UNet2DModel, scheduler: DDIMScheduler, torch_dtype=torch.float16, vae=None):
        super().__init__()
        self.register_modules(unet=unet, scheduler=scheduler)
        self.torch_dtype = torch_dtype

    @torch.no_grad()
    def __call__(
        self,
        segmap = None,
        batch_size: int = 8,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        eta: float = 0.0,
        num_inference_steps: int = 1000,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        s: int = 1,
        **kwargs,
    ) -> Union[Tuple, ImagePipelineOutput]:
        r"""
        Args:
            batch_size (`int`, *optional*, defaults to 1):
                Number of images to generate.
            generator (`torch.Generator`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.

        Returns:
            [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.model.ImagePipelineOutput`] if `return_dict` is
            True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.
        """
        self.unet.config.sample_size = (270,360)
        if not isinstance(self.unet.config.sample_size, tuple):
            self.unet.config.sample_size = (self.unet.config.sample_size, self.unet.config.sample_size)

        if segmap is None:
            print("Didn't inpute any segmap, use the empty as the input")
            segmap = torch.zeros(batch_size,self.unet.config.segmap_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1])
        segmap = segmap.to(self.device).type(self.torch_dtype)
        latents = randn_tensor(
            (batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1]),
            generator=generator,
        )

        latents = latents.to(self.device).type(self.torch_dtype)

        # scale the initial noise by the standard deviation required by the scheduler (need to check)
        latents = latents * self.scheduler.init_noise_sigma

        self.scheduler.set_timesteps(num_inference_steps)

        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())

        extra_kwargs = {}
        if accepts_eta:
            extra_kwargs["eta"] = eta

        for t in self.progress_bar(self.scheduler.timesteps):
            latent_model_input = self.scheduler.scale_model_input(latents, t)
            # predict the noise residual
            noise_prediction = self.unet(latent_model_input, segmap, t).sample

            #noise_prediction = noise_prediction[]

            if s > 1.0:
                model_output_zero = self.unet(latent_model_input, torch.zeros_like(segmap), t).sample
                noise_prediction[:, :3] = model_output_zero[:, :3] + s * (noise_prediction[:, :3] - model_output_zero[:, :3])

            #noise_prediction = noise_prediction[:, :3]

            # compute the previous noisy sample x_t -> x_t-1
            #breakpoint()
            latents = self.scheduler.step(noise_prediction, t, latents, **extra_kwargs).prev_sample

        # decode the image latents with the VAE
        # latents /= self.vae.config.scaling_factor#(0.18215)
        # image = self.vae.decode(latents).sample
        image = latents
        #image = (image + 1) / 2.0
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)