Spaces:
Sleeping
Sleeping
metadata
title: RAGTesting
emoji: π¬
colorFrom: yellow
colorTo: purple
sdk: gradio
sdk_version: 5.0.1
app_file: app.py
pinned: false
license: mit
short_description: A simple RAG demo
Mini RAG Demo β Retrieval-Augmented Generation on Wikipedia
This is a lightweight Retrieval-Augmented Generation (RAG) app built with Gradio. It combines semantic search over a mini Wikipedia (rag-datasets/rag-mini-wikipedia
) corpus with reranking and language generation to answer natural language questions using real documents.
What It Does
- Embeds a query using a SentenceTransformer (
all-MiniLM-L6-v2
) - Retrieves the top-5 most semantically similar Wikipedia passages using FAISS
- Reranks them using a CrossEncoder model (
cross-encoder/ms-marco-MiniLM-L-6-v2
) - Generates an answer using a Hugging Face language model
Tech Stack
- Gradio β Web interface
- FAISS β Fast dense vector retrieval
- Sentence-Transformers β Embedding & reranking
- Transformers (Hugging Face) β Language model for generation
- Hugging Face Datasets β Mini Wikipedia corpus (
rag-datasets/rag-mini-wikipedia
)
Models Used
Purpose | Model |
---|---|
Embedding | all-MiniLM-L6-v2 |
Reranking | cross-encoder/ms-marco-MiniLM-L-6-v2 |
Generation | mistralai/Mistral-7B-Instruct-v0.2 (optional) or a smaller model |
π¦ Running Locally
To run the app locally:
git clone https://huggingface.co/spaces/YOUR_USERNAME/mini-rag-demo
cd mini-rag-demo
pip install -r requirements.txt
python app.py