FrameArena / app.py
davidberenstein1957's picture
Initial commit of the FrameLens project, including core application logic in app.py, configuration files (.python-version, pyproject.toml, requirements.txt), example video data (data.json), and necessary assets (.DS_Store). The application supports frame-by-frame video comparison using various metrics.
0e0fda4
raw
history blame
52.9 kB
import json
import os
import cv2
import gradio as gr
import imagehash
import numpy as np
import plotly.graph_objects as go
from PIL import Image
from plotly.subplots import make_subplots
from scipy.stats import pearsonr
from skimage.metrics import mean_squared_error as mse_skimage
from skimage.metrics import peak_signal_noise_ratio as psnr_skimage
from skimage.metrics import structural_similarity as ssim
class FrameMetrics:
"""Class to compute and store frame-by-frame metrics"""
def __init__(self):
self.metrics = {}
def compute_ssim(self, frame1, frame2):
"""Compute SSIM between two frames"""
if frame1 is None or frame2 is None:
return None
try:
# Convert to grayscale for SSIM computation
gray1 = (
cv2.cvtColor(frame1, cv2.COLOR_RGB2GRAY)
if len(frame1.shape) == 3
else frame1
)
gray2 = (
cv2.cvtColor(frame2, cv2.COLOR_RGB2GRAY)
if len(frame2.shape) == 3
else frame2
)
# Ensure both frames have the same dimensions
if gray1.shape != gray2.shape:
# Resize to match the smaller dimension
h = min(gray1.shape[0], gray2.shape[0])
w = min(gray1.shape[1], gray2.shape[1])
gray1 = cv2.resize(gray1, (w, h))
gray2 = cv2.resize(gray2, (w, h))
# Compute SSIM
ssim_value = ssim(gray1, gray2, data_range=255)
return ssim_value
except Exception as e:
print(f"SSIM computation failed: {e}")
return None
def compute_ms_ssim(self, frame1, frame2):
"""Compute Multi-Scale SSIM between two frames"""
if frame1 is None or frame2 is None:
return None
try:
# Convert to grayscale for MS-SSIM computation
gray1 = (
cv2.cvtColor(frame1, cv2.COLOR_RGB2GRAY)
if len(frame1.shape) == 3
else frame1
)
gray2 = (
cv2.cvtColor(frame2, cv2.COLOR_RGB2GRAY)
if len(frame2.shape) == 3
else frame2
)
# Ensure both frames have the same dimensions
if gray1.shape != gray2.shape:
h = min(gray1.shape[0], gray2.shape[0])
w = min(gray1.shape[1], gray2.shape[1])
gray1 = cv2.resize(gray1, (w, h))
gray2 = cv2.resize(gray2, (w, h))
# Ensure minimum size for multi-scale analysis
min_size = 32
if min(gray1.shape) < min_size:
return None
# Compute MS-SSIM using multiple scales
from skimage.metrics import structural_similarity
# Use win_size that works with image dimensions
win_size = min(7, min(gray1.shape) // 4)
if win_size < 3:
win_size = 3
ms_ssim_val = structural_similarity(
gray1, gray2, data_range=255, win_size=win_size, multichannel=False
)
return ms_ssim_val
except Exception as e:
print(f"MS-SSIM computation failed: {e}")
return None
def compute_psnr(self, frame1, frame2):
"""Compute PSNR between two frames"""
if frame1 is None or frame2 is None:
return None
try:
# Ensure both frames have the same dimensions
if frame1.shape != frame2.shape:
h = min(frame1.shape[0], frame2.shape[0])
w = min(frame1.shape[1], frame2.shape[1])
c = (
min(frame1.shape[2], frame2.shape[2])
if len(frame1.shape) == 3
else 1
)
if len(frame1.shape) == 3:
frame1 = cv2.resize(frame1, (w, h))[:, :, :c]
frame2 = cv2.resize(frame2, (w, h))[:, :, :c]
else:
frame1 = cv2.resize(frame1, (w, h))
frame2 = cv2.resize(frame2, (w, h))
# Compute PSNR
return psnr_skimage(frame1, frame2, data_range=255)
except Exception as e:
print(f"PSNR computation failed: {e}")
return None
def compute_mse(self, frame1, frame2):
"""Compute MSE between two frames"""
if frame1 is None or frame2 is None:
return None
try:
# Ensure both frames have the same dimensions
if frame1.shape != frame2.shape:
h = min(frame1.shape[0], frame2.shape[0])
w = min(frame1.shape[1], frame2.shape[1])
c = (
min(frame1.shape[2], frame2.shape[2])
if len(frame1.shape) == 3
else 1
)
if len(frame1.shape) == 3:
frame1 = cv2.resize(frame1, (w, h))[:, :, :c]
frame2 = cv2.resize(frame2, (w, h))[:, :, :c]
else:
frame1 = cv2.resize(frame1, (w, h))
frame2 = cv2.resize(frame2, (w, h))
# Compute MSE
return mse_skimage(frame1, frame2)
except Exception as e:
print(f"MSE computation failed: {e}")
return None
def compute_phash(self, frame1, frame2):
"""Compute perceptual hash similarity between two frames"""
if frame1 is None or frame2 is None:
return None
try:
# Convert to PIL Images for imagehash
pil1 = Image.fromarray(frame1)
pil2 = Image.fromarray(frame2)
# Compute perceptual hashes
hash1 = imagehash.phash(pil1)
hash2 = imagehash.phash(pil2)
# Calculate similarity (lower hamming distance = more similar)
hamming_distance = hash1 - hash2
# Convert to similarity score (0-1, where 1 is identical)
max_distance = len(str(hash1)) * 4 # 4 bits per hex char
similarity = 1 - (hamming_distance / max_distance)
return similarity
except Exception as e:
print(f"pHash computation failed: {e}")
return None
def compute_color_histogram_correlation(self, frame1, frame2):
"""Compute color histogram correlation between two frames"""
if frame1 is None or frame2 is None:
return None
try:
# Ensure both frames have the same dimensions
if frame1.shape != frame2.shape:
h = min(frame1.shape[0], frame2.shape[0])
w = min(frame1.shape[1], frame2.shape[1])
frame1 = cv2.resize(frame1, (w, h))
frame2 = cv2.resize(frame2, (w, h))
# Compute histograms for each channel
correlations = []
if len(frame1.shape) == 3: # Color image
for i in range(3): # R, G, B channels
hist1 = cv2.calcHist([frame1], [i], None, [256], [0, 256])
hist2 = cv2.calcHist([frame2], [i], None, [256], [0, 256])
# Flatten histograms
hist1 = hist1.flatten()
hist2 = hist2.flatten()
# Compute correlation
if np.std(hist1) > 0 and np.std(hist2) > 0:
corr, _ = pearsonr(hist1, hist2)
correlations.append(corr)
# Return average correlation across channels
return np.mean(correlations) if correlations else 0.0
else: # Grayscale
hist1 = cv2.calcHist([frame1], [0], None, [256], [0, 256]).flatten()
hist2 = cv2.calcHist([frame2], [0], None, [256], [0, 256]).flatten()
if np.std(hist1) > 0 and np.std(hist2) > 0:
corr, _ = pearsonr(hist1, hist2)
return corr
else:
return 0.0
except Exception as e:
print(f"Color histogram correlation computation failed: {e}")
return None
def compute_sharpness(self, frame):
"""Compute sharpness using Laplacian variance method"""
if frame is None:
return None
# Convert to grayscale if needed
gray = (
cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) if len(frame.shape) == 3 else frame
)
# Compute Laplacian variance (higher values = sharper)
laplacian = cv2.Laplacian(gray, cv2.CV_64F)
sharpness = laplacian.var()
return sharpness
def compute_frame_metrics(self, frame1, frame2, frame_idx):
"""Compute all metrics for a frame pair"""
metrics = {
"frame_index": frame_idx,
"ssim": self.compute_ssim(frame1, frame2),
"psnr": self.compute_psnr(frame1, frame2),
"mse": self.compute_mse(frame1, frame2),
"phash": self.compute_phash(frame1, frame2),
"color_hist_corr": self.compute_color_histogram_correlation(frame1, frame2),
"sharpness1": self.compute_sharpness(frame1),
"sharpness2": self.compute_sharpness(frame2),
}
# Compute average sharpness for the pair
if metrics["sharpness1"] is not None and metrics["sharpness2"] is not None:
metrics["sharpness_avg"] = (
metrics["sharpness1"] + metrics["sharpness2"]
) / 2
metrics["sharpness_diff"] = abs(
metrics["sharpness1"] - metrics["sharpness2"]
)
else:
metrics["sharpness_avg"] = None
metrics["sharpness_diff"] = None
return metrics
def compute_all_metrics(self, frames1, frames2):
"""Compute metrics for all frame pairs"""
all_metrics = []
max_frames = max(len(frames1), len(frames2))
for i in range(max_frames):
frame1 = frames1[i] if i < len(frames1) else None
frame2 = frames2[i] if i < len(frames2) else None
if frame1 is not None or frame2 is not None:
metrics = self.compute_frame_metrics(frame1, frame2, i)
all_metrics.append(metrics)
else:
# Handle cases where both frames are missing
all_metrics.append(
{
"frame_index": i,
"ssim": None,
"ms_ssim": None,
"psnr": None,
"mse": None,
"phash": None,
"color_hist_corr": None,
"sharpness1": None,
"sharpness2": None,
"sharpness_avg": None,
"sharpness_diff": None,
}
)
return all_metrics
def get_metric_summary(self, metrics_list):
"""Compute summary statistics for all metrics"""
metric_names = [
"ssim",
"psnr",
"mse",
"phash",
"color_hist_corr",
"sharpness1",
"sharpness2",
"sharpness_avg",
"sharpness_diff",
]
summary = {
"total_frames": len(metrics_list),
"valid_frames": len([m for m in metrics_list if m.get("ssim") is not None]),
}
# Compute statistics for each metric
for metric_name in metric_names:
valid_values = [
m[metric_name] for m in metrics_list if m.get(metric_name) is not None
]
if valid_values:
summary.update(
{
f"{metric_name}_mean": np.mean(valid_values),
f"{metric_name}_min": np.min(valid_values),
f"{metric_name}_max": np.max(valid_values),
f"{metric_name}_std": np.std(valid_values),
}
)
return summary
def create_modern_plot(self, metrics_list, current_frame=0):
"""Create a comprehensive multi-metric visualization with shared hover"""
if not metrics_list:
return None
# Extract frame indices and metric values
frame_indices = [m["frame_index"] for m in metrics_list]
# Create 3x2 subplots with quality overview at the top
fig = make_subplots(
rows=3,
cols=2,
subplot_titles=(
"Quality Overview (Combined Score)",
"", # Empty title for merged cell
"SSIM",
"PSNR vs MSE",
"Perceptual Hash vs Color Histogram",
"Individual Sharpness (Video 1 vs Video 2)",
),
specs=[
[
{"colspan": 2, "secondary_y": False},
None,
], # Row 1: Quality Overview (single axis)
[
{"secondary_y": False},
{"secondary_y": True},
], # Row 2: SSIM (single axis), PSNR vs MSE
[
{"secondary_y": True},
{"secondary_y": True},
], # Row 3: pHash vs Color, Individual Sharpness
],
vertical_spacing=0.12,
horizontal_spacing=0.1,
)
# Helper function to get valid data
def get_valid_data(metric_name):
values = [m.get(metric_name) for m in metrics_list]
valid_indices = [i for i, v in enumerate(values) if v is not None]
valid_values = [values[i] for i in valid_indices]
valid_frames = [frame_indices[i] for i in valid_indices]
return valid_frames, valid_values
# Plot 1: Quality Overview - Combined Score Only (row 1, full width)
ssim_frames, ssim_values = get_valid_data("ssim")
psnr_frames, psnr_values = get_valid_data("psnr")
# Show only combined quality score
if ssim_values and psnr_values and len(ssim_values) == len(psnr_values):
# Normalize metrics to 0-1 scale for comparison
ssim_norm = np.array(ssim_values)
psnr_norm = np.clip(np.array(psnr_values) / 50, 0, 1)
quality_score = (ssim_norm + psnr_norm) / 2
fig.add_trace(
go.Scatter(
x=ssim_frames,
y=quality_score,
mode="lines+markers",
name="Quality Score ↑",
line=dict(color="gold", width=4),
marker=dict(size=8),
hovertemplate="<b>Frame %{x}</b><br>Quality Score: %{y:.3f}<extra></extra>",
fill="tonexty",
),
row=1,
col=1,
)
# Plot 2: SSIM (row 2, col 1)
if ssim_values:
fig.add_trace(
go.Scatter(
x=ssim_frames,
y=ssim_values,
mode="lines+markers",
name="SSIM ↑",
line=dict(color="blue", width=3),
marker=dict(size=6),
hovertemplate="<b>Frame %{x}</b><br>SSIM: %{y:.4f}<extra></extra>",
),
row=2,
col=1,
)
# Get pHash data for later use
phash_frames, phash_values = get_valid_data("phash")
# Plot 3: PSNR vs MSE (row 2, col 2) - keep as is since already shows individual metrics
if psnr_values:
fig.add_trace(
go.Scatter(
x=psnr_frames,
y=psnr_values,
mode="lines+markers",
name="PSNR ↑",
line=dict(color="green", width=2),
hovertemplate="<b>Frame %{x}</b><br>PSNR: %{y:.2f} dB<extra></extra>",
),
row=2,
col=2,
)
mse_frames, mse_values = get_valid_data("mse")
if mse_values:
fig.add_trace(
go.Scatter(
x=mse_frames,
y=mse_values,
mode="lines+markers",
name="MSE ↓",
line=dict(color="red", width=2),
hovertemplate="<b>Frame %{x}</b><br>MSE: %{y:.2f}<extra></extra>",
yaxis="y6",
),
row=2,
col=2,
secondary_y=True,
)
# Plot 4: Perceptual Hash vs Color Histogram (row 3, col 1) - keep as is
if phash_values:
fig.add_trace(
go.Scatter(
x=phash_frames,
y=phash_values,
mode="lines+markers",
name="pHash ↑",
line=dict(color="purple", width=2),
hovertemplate="<b>Frame %{x}</b><br>pHash: %{y:.4f}<extra></extra>",
),
row=3,
col=1,
)
hist_frames, hist_values = get_valid_data("color_hist_corr")
if hist_values:
fig.add_trace(
go.Scatter(
x=hist_frames,
y=hist_values,
mode="lines+markers",
name="Color Hist ↑",
line=dict(color="orange", width=2),
hovertemplate="<b>Frame %{x}</b><br>Hist Corr: %{y:.4f}<extra></extra>",
yaxis="y8",
),
row=3,
col=1,
secondary_y=True,
)
# Plot 5: Individual Sharpness - Video 1 vs Video 2 (row 3, col 2)
sharp1_frames, sharp1_values = get_valid_data("sharpness1")
sharp2_frames, sharp2_values = get_valid_data("sharpness2")
if sharp1_values:
fig.add_trace(
go.Scatter(
x=sharp1_frames,
y=sharp1_values,
mode="lines+markers",
name="Video 1 Sharpness ↑",
line=dict(color="darkgreen", width=2),
hovertemplate="<b>Frame %{x}</b><br>Video 1 Sharpness: %{y:.1f}<extra></extra>",
),
row=3,
col=2,
)
if sharp2_values:
fig.add_trace(
go.Scatter(
x=sharp2_frames,
y=sharp2_values,
mode="lines+markers",
name="Video 2 Sharpness ↑",
line=dict(color="darkblue", width=2),
hovertemplate="<b>Frame %{x}</b><br>Video 2 Sharpness: %{y:.1f}<extra></extra>",
yaxis="y10",
),
row=3,
col=2,
secondary_y=True,
)
# Add current frame marker to all plots
if current_frame is not None:
# Add vertical line to each subplot to show current frame
# Subplot (1,1): Quality Overview (full width)
fig.add_vline(
x=current_frame,
line_dash="dash",
line_color="red",
line_width=2,
row=1,
col=1,
)
# Subplot (2,1): Similarity Metrics
fig.add_vline(
x=current_frame,
line_dash="dash",
line_color="red",
line_width=2,
row=2,
col=1,
)
# Subplot (2,2): PSNR vs MSE
fig.add_vline(
x=current_frame,
line_dash="dash",
line_color="red",
line_width=2,
row=2,
col=2,
)
# Subplot (3,1): pHash vs Color Histogram
fig.add_vline(
x=current_frame,
line_dash="dash",
line_color="red",
line_width=2,
row=3,
col=1,
)
# Subplot (3,2): Individual Sharpness
fig.add_vline(
x=current_frame,
line_dash="dash",
line_color="red",
line_width=2,
row=3,
col=2,
)
# Update layout with shared hover mode and other improvements
fig.update_layout(
height=900,
showlegend=True,
hovermode="x unified", # Shared hover pointer across subplots
dragmode=False,
title={
"text": "πŸ“Š Multi-Metric Video Quality Analysis Dashboard",
"x": 0.5,
"xanchor": "center",
"font": {"size": 16},
},
legend={
"orientation": "h",
"yanchor": "bottom",
"y": 1.02,
"xanchor": "center",
"x": 0.5,
"font": {"size": 10},
},
margin=dict(t=100, b=50, l=50, r=50),
plot_bgcolor="rgba(0,0,0,0)",
paper_bgcolor="rgba(0,0,0,0)",
)
# Update axes labels and ranges with improved configuration
fig.update_xaxes(title_text="Frame", fixedrange=True)
# Quality Overview axis (row 1, col 1) - focused range to emphasize differences
quality_values = []
if ssim_values and psnr_values and len(ssim_values) == len(psnr_values):
ssim_norm = np.array(ssim_values)
psnr_norm = np.clip(np.array(psnr_values) / 50, 0, 1)
quality_values = (ssim_norm + psnr_norm) / 2
if len(quality_values) > 0:
# Use dynamic range based on data with some padding for better visualization
min_qual = float(np.min(quality_values))
max_qual = float(np.max(quality_values))
range_padding = (max_qual - min_qual) * 0.1 # 10% padding
y_min = max(0, min_qual - range_padding)
y_max = min(1, max_qual + range_padding)
# Ensure minimum range for visibility
if (y_max - y_min) < 0.1:
center = (y_max + y_min) / 2
y_min = max(0, center - 0.05)
y_max = min(1, center + 0.05)
else:
# Fallback range
y_min, y_max = 0.5, 1.0
fig.update_yaxes(
title_text="Quality Score",
row=1,
col=1,
fixedrange=True,
range=[y_min, y_max],
)
# SSIM axis (row 2, col 1)
fig.update_yaxes(
title_text="SSIM", row=2, col=1, fixedrange=True, range=[0, 1.05]
)
# PSNR vs MSE axes (row 2, col 2)
fig.update_yaxes(title_text="PSNR (dB)", row=2, col=2, fixedrange=True)
fig.update_yaxes(
title_text="MSE", row=2, col=2, secondary_y=True, fixedrange=True
)
# pHash vs Color Histogram axes (row 3, col 1)
fig.update_yaxes(title_text="pHash Similarity", row=3, col=1, fixedrange=True)
fig.update_yaxes(
title_text="Histogram Correlation",
row=3,
col=1,
secondary_y=True,
fixedrange=True,
)
# Individual Sharpness axes (row 3, col 2)
fig.update_yaxes(title_text="Video 1 Sharpness", row=3, col=2, fixedrange=True)
fig.update_yaxes(
title_text="Video 2 Sharpness",
row=3,
col=2,
secondary_y=True,
fixedrange=True,
)
return fig
class VideoFrameComparator:
def __init__(self):
self.video1_frames = []
self.video2_frames = []
self.max_frames = 0
self.frame_metrics = FrameMetrics()
self.computed_metrics = []
self.metrics_summary = {}
def extract_frames(self, video_path):
"""Extract all frames from a video file or URL"""
if not video_path:
return []
# Check if it's a URL or local file
is_url = video_path.startswith(("http://", "https://"))
if not is_url and not os.path.exists(video_path):
print(f"Warning: Local video file not found: {video_path}")
return []
frames = []
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print(
f"Error: Could not open video {'URL' if is_url else 'file'}: {video_path}"
)
return []
try:
frame_count = 0
while True:
ret, frame = cap.read()
if not ret:
break
# Convert BGR to RGB for display
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame_rgb)
frame_count += 1
# Add progress feedback for URLs (which might be slower)
if is_url and frame_count % 30 == 0:
print(f"Processed {frame_count} frames from URL...")
except Exception as e:
print(f"Error processing video: {e}")
finally:
cap.release()
print(
f"Successfully extracted {len(frames)} frames from {'URL' if is_url else 'file'}: {video_path}"
)
return frames
def is_comparison_in_data_json(
self, video1_path, video2_path, json_file_path="data.json"
):
"""Check if this video comparison exists in data.json"""
try:
with open(json_file_path, "r") as f:
data = json.load(f)
for comparison in data.get("comparisons", []):
videos = comparison.get("videos", [])
if len(videos) == 2:
# Check both orders (works for both local files and URLs)
if (videos[0] == video1_path and videos[1] == video2_path) or (
videos[0] == video2_path and videos[1] == video1_path
):
return True
return False
except:
return False
def load_videos(self, video1_path, video2_path):
"""Load both videos and extract frames"""
if not video1_path and not video2_path:
return "Please upload at least one video.", 0, None, None, "", None
# Extract frames from both videos
self.video1_frames = self.extract_frames(video1_path) if video1_path else []
self.video2_frames = self.extract_frames(video2_path) if video2_path else []
# Determine maximum number of frames
self.max_frames = max(len(self.video1_frames), len(self.video2_frames))
if self.max_frames == 0:
return (
"No valid frames found in the uploaded videos.",
0,
None,
None,
"",
None,
)
# Compute metrics if both videos are present and not in data.json
metrics_info = ""
metrics_plot = None
if (
video1_path
and video2_path
and not self.is_comparison_in_data_json(video1_path, video2_path)
):
print("Computing comprehensive frame-by-frame metrics...")
self.computed_metrics = self.frame_metrics.compute_all_metrics(
self.video1_frames, self.video2_frames
)
self.metrics_summary = self.frame_metrics.get_metric_summary(
self.computed_metrics
)
# Build metrics info string
metrics_info = "\n\nπŸ“Š Computed Metrics Summary:\n"
metric_display = {
"ssim": ("SSIM", ".4f", "", "↑ Higher=Better"),
"psnr": ("PSNR", ".2f", " dB", "↑ Higher=Better"),
"mse": ("MSE", ".2f", "", "↓ Lower=Better"),
"phash": ("pHash", ".4f", "", "↑ Higher=Better"),
"color_hist_corr": ("Color Hist", ".4f", "", "↑ Higher=Better"),
"sharpness_avg": ("Sharpness", ".1f", "", "↑ Higher=Better"),
}
for metric_key, (
display_name,
format_str,
unit,
direction,
) in metric_display.items():
if self.metrics_summary.get(f"{metric_key}_mean") is not None:
mean_val = self.metrics_summary[f"{metric_key}_mean"]
std_val = self.metrics_summary[f"{metric_key}_std"]
metrics_info += f"{display_name}: ΞΌ={mean_val:{format_str}}{unit}, Οƒ={std_val:{format_str}}{unit} ({direction})\n"
metrics_info += f"Valid Frames: {self.metrics_summary['valid_frames']}/{self.metrics_summary['total_frames']}"
# Generate initial plot
metrics_plot = self.frame_metrics.create_modern_plot(
self.computed_metrics, 0
)
else:
self.computed_metrics = []
self.metrics_summary = {}
if video1_path and video2_path:
metrics_info = "\n\nπŸ“‹ Note: This comparison is predefined in data.json (metrics not computed)"
# Get initial frames
frame1 = (
self.video1_frames[0]
if self.video1_frames
else np.zeros((480, 640, 3), dtype=np.uint8)
)
frame2 = (
self.video2_frames[0]
if self.video2_frames
else np.zeros((480, 640, 3), dtype=np.uint8)
)
status_msg = "Videos loaded successfully!\n"
status_msg += f"Video 1: {len(self.video1_frames)} frames\n"
status_msg += f"Video 2: {len(self.video2_frames)} frames\n"
status_msg += (
f"Use the slider to navigate through frames (0-{self.max_frames - 1})"
)
status_msg += metrics_info
return (
status_msg,
self.max_frames - 1,
frame1,
frame2,
self.get_current_frame_info(0),
metrics_plot,
)
def get_frames_at_index(self, frame_index):
"""Get frames at specific index from both videos"""
frame_index = int(frame_index)
# Get frame from video 1
if frame_index < len(self.video1_frames):
frame1 = self.video1_frames[frame_index]
else:
# Create a placeholder if frame doesn't exist
frame1 = np.zeros((480, 640, 3), dtype=np.uint8)
cv2.putText(
frame1,
f"Frame {frame_index} not available",
(50, 240),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(255, 255, 255),
2,
)
# Get frame from video 2
if frame_index < len(self.video2_frames):
frame2 = self.video2_frames[frame_index]
else:
# Create a placeholder if frame doesn't exist
frame2 = np.zeros((480, 640, 3), dtype=np.uint8)
cv2.putText(
frame2,
f"Frame {frame_index} not available",
(50, 240),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(255, 255, 255),
2,
)
return frame1, frame2
def get_current_frame_info(self, frame_index):
"""Get information about the current frame including metrics"""
frame_index = int(frame_index)
info = f"Current Frame: {frame_index} / {self.max_frames - 1}"
# Add metrics info if available
if self.computed_metrics and frame_index < len(self.computed_metrics):
metrics = self.computed_metrics[frame_index]
# === COMPARISON METRICS (Between Videos) ===
comparison_metrics = []
# SSIM with quality assessment
if metrics.get("ssim") is not None:
ssim_val = metrics["ssim"]
if ssim_val >= 0.9:
quality = "🟒 Excellent"
elif ssim_val >= 0.8:
quality = "πŸ”΅ Good"
elif ssim_val >= 0.6:
quality = "🟑 Fair"
else:
quality = "πŸ”΄ Poor"
comparison_metrics.append(f"SSIM: {ssim_val:.4f} ↑ ({quality})")
# PSNR with quality indicator
if metrics.get("psnr") is not None:
psnr_val = metrics["psnr"]
if psnr_val >= 40:
psnr_quality = "🟒"
elif psnr_val >= 30:
psnr_quality = "πŸ”΅"
elif psnr_val >= 20:
psnr_quality = "🟑"
else:
psnr_quality = "πŸ”΄"
comparison_metrics.append(f"PSNR: {psnr_val:.1f}dB ↑ {psnr_quality}")
# MSE with quality indicator (lower is better)
if metrics.get("mse") is not None:
mse_val = metrics["mse"]
if mse_val <= 50:
mse_quality = "🟒"
elif mse_val <= 100:
mse_quality = "πŸ”΅"
elif mse_val <= 200:
mse_quality = "🟑"
else:
mse_quality = "πŸ”΄"
comparison_metrics.append(f"MSE: {mse_val:.1f} ↓ {mse_quality}")
# pHash with quality indicator
if metrics.get("phash") is not None:
phash_val = metrics["phash"]
if phash_val >= 0.95:
phash_quality = "🟒"
elif phash_val >= 0.9:
phash_quality = "πŸ”΅"
elif phash_val >= 0.8:
phash_quality = "🟑"
else:
phash_quality = "πŸ”΄"
comparison_metrics.append(f"pHash: {phash_val:.3f} ↑ {phash_quality}")
# Color Histogram Correlation
if metrics.get("color_hist_corr") is not None:
color_val = metrics["color_hist_corr"]
if color_val >= 0.9:
color_quality = "🟒"
elif color_val >= 0.8:
color_quality = "πŸ”΅"
elif color_val >= 0.6:
color_quality = "🟑"
else:
color_quality = "πŸ”΄"
comparison_metrics.append(f"Color: {color_val:.3f} ↑ {color_quality}")
# Add comparison metrics to info
if comparison_metrics:
info += " | " + " | ".join(comparison_metrics)
# === INDIVIDUAL IMAGE METRICS ===
individual_metrics = []
# Individual Sharpness for each video
if metrics.get("sharpness1") is not None:
sharp1 = metrics["sharpness1"]
if sharp1 >= 200:
sharp1_quality = "🟒"
elif sharp1 >= 100:
sharp1_quality = "πŸ”΅"
elif sharp1 >= 50:
sharp1_quality = "🟑"
else:
sharp1_quality = "πŸ”΄"
individual_metrics.append(
f"V1 Sharpness: {sharp1:.0f} ↑ {sharp1_quality}"
)
if metrics.get("sharpness2") is not None:
sharp2 = metrics["sharpness2"]
if sharp2 >= 200:
sharp2_quality = "🟒"
elif sharp2 >= 100:
sharp2_quality = "πŸ”΅"
elif sharp2 >= 50:
sharp2_quality = "🟑"
else:
sharp2_quality = "πŸ”΄"
individual_metrics.append(
f"V2 Sharpness: {sharp2:.0f} ↑ {sharp2_quality}"
)
# Sharpness comparison and winner
if (
metrics.get("sharpness1") is not None
and metrics.get("sharpness2") is not None
):
sharp1 = metrics["sharpness1"]
sharp2 = metrics["sharpness2"]
# Determine winner
if sharp1 > sharp2:
winner = "V1"
winner_emoji = "πŸ†"
elif sharp2 > sharp1:
winner = "V2"
winner_emoji = "πŸ†"
else:
winner = "Tie"
winner_emoji = "βš–οΈ"
diff_pct = abs(sharp1 - sharp2) / max(sharp1, sharp2) * 100
# Add significance
if diff_pct > 20:
significance = "Major"
elif diff_pct > 10:
significance = "Moderate"
elif diff_pct > 5:
significance = "Minor"
else:
significance = "Negligible"
individual_metrics.append(
f"Sharpness Winner: {winner_emoji}{winner} ({significance})"
)
# Add individual metrics to info
if individual_metrics:
info += "\nπŸ“Š Individual: " + " | ".join(individual_metrics)
# === OVERALL QUALITY ASSESSMENT ===
quality_score = 0
quality_count = 0
# Calculate overall quality score
if metrics.get("ssim") is not None:
quality_score += metrics["ssim"]
quality_count += 1
if metrics.get("psnr") is not None:
# Normalize PSNR to 0-1 scale (assume 50dB max)
psnr_norm = min(metrics["psnr"] / 50, 1.0)
quality_score += psnr_norm
quality_count += 1
if metrics.get("phash") is not None:
quality_score += metrics["phash"]
quality_count += 1
if quality_count > 0:
avg_quality = quality_score / quality_count
# Add overall assessment
if avg_quality >= 0.9:
overall = "✨ Excellent Match"
elif avg_quality >= 0.8:
overall = "βœ… Good Match"
elif avg_quality >= 0.6:
overall = "⚠️ Fair Match"
else:
overall = "❌ Poor Match"
info += f"\n🎯 Overall: {overall}"
return info
def get_updated_plot(self, frame_index):
"""Get updated plot with current frame highlighted"""
if self.computed_metrics:
return self.frame_metrics.create_modern_plot(
self.computed_metrics, int(frame_index)
)
return None
def load_examples_from_json(json_file_path="data.json"):
"""Load example video pairs from JSON configuration file"""
try:
with open(json_file_path, "r") as f:
data = json.load(f)
examples = []
# Extract video pairs from the comparisons
for comparison in data.get("comparisons", []):
videos = comparison.get("videos", [])
# Validate that video files/URLs exist or are accessible
valid_videos = []
for video_path in videos:
if video_path: # Check if not empty/None
# Check if it's a URL
if video_path.startswith(("http://", "https://")):
# For URLs, we'll assume they're valid (can't easily check without downloading)
# OpenCV will handle the validation during actual loading
valid_videos.append(video_path)
print(f"Added video URL: {video_path}")
elif os.path.exists(video_path):
# For local files, check existence
valid_videos.append(video_path)
print(f"Added local video file: {video_path}")
else:
print(f"Warning: Local video file not found: {video_path}")
# Add to examples if we have valid videos
if len(valid_videos) == 2:
examples.append(valid_videos)
elif len(valid_videos) == 1:
# Single video example (compare with None)
examples.append([valid_videos[0], None])
return examples
except FileNotFoundError:
print(f"Warning: {json_file_path} not found. No examples will be loaded.")
return []
except json.JSONDecodeError as e:
print(f"Error parsing {json_file_path}: {e}")
return []
except Exception as e:
print(f"Error loading examples: {e}")
return []
def get_all_videos_from_json(json_file_path="data.json"):
"""Get list of all unique videos mentioned in the JSON file"""
try:
with open(json_file_path, "r") as f:
data = json.load(f)
all_videos = set()
# Extract all unique video paths/URLs from comparisons
for comparison in data.get("comparisons", []):
videos = comparison.get("videos", [])
for video_path in videos:
if video_path: # Only add non-empty paths
# Check if it's a URL or local file
if video_path.startswith(("http://", "https://")):
# For URLs, add them directly
all_videos.add(video_path)
elif os.path.exists(video_path):
# For local files, check existence before adding
all_videos.add(video_path)
return sorted(list(all_videos))
except FileNotFoundError:
print(f"Warning: {json_file_path} not found.")
return []
except json.JSONDecodeError as e:
print(f"Error parsing {json_file_path}: {e}")
return []
except Exception as e:
print(f"Error loading videos: {e}")
return []
def create_app():
comparator = VideoFrameComparator()
example_pairs = load_examples_from_json()
all_videos = get_all_videos_from_json()
with gr.Blocks(
title="FrameLens - Video Frame Comparator",
# theme=gr.themes.Soft(),
) as app:
gr.Markdown("""
# 🎬 FrameLens - Professional Video Quality Analysis
Upload two videos and compare them using comprehensive quality metrics.
Perfect for analyzing compression effects, processing artifacts, and visual quality assessment.
**✨ Features**: SSIM, PSNR, MSE, pHash, Color Histogram & Sharpness Analysis!
""")
with gr.Row():
with gr.Column():
gr.Markdown("### Video 1")
video1_input = gr.File(
label="Upload Video 1",
file_types=[
".mp4",
".avi",
".mov",
".mkv",
".wmv",
".flv",
".webm",
],
type="filepath",
)
with gr.Column():
gr.Markdown("### Video 2")
video2_input = gr.File(
label="Upload Video 2",
file_types=[
".mp4",
".avi",
".mov",
".mkv",
".wmv",
".flv",
".webm",
],
type="filepath",
)
# Add examples if available (this auto-populates inputs when clicked)
if example_pairs:
gr.Markdown("### πŸ“ Example Video Comparisons")
gr.Examples(
examples=example_pairs,
inputs=[video1_input, video2_input],
label="Click any example to load video pairs:",
examples_per_page=10,
)
load_btn = gr.Button("πŸ”„ Load Videos", variant="primary", size="lg")
# Frame comparison section (initially hidden)
frame_display = gr.Row(visible=False)
with frame_display:
with gr.Column():
gr.Markdown("### Video 1 - Current Frame")
frame1_output = gr.Image(
label="Video 1 Frame", type="numpy", interactive=False, height=400
)
with gr.Column():
gr.Markdown("### Video 2 - Current Frame")
frame2_output = gr.Image(
label="Video 2 Frame", type="numpy", interactive=False, height=400
)
# Frame navigation (initially hidden) - moved underneath frames
frame_controls = gr.Row(visible=False)
with frame_controls:
frame_slider = gr.Slider(
minimum=0,
maximum=0,
step=1,
value=0,
label="Frame Number",
interactive=False,
)
# Comprehensive metrics visualization (initially hidden)
metrics_section = gr.Row(visible=False)
with metrics_section:
with gr.Column():
# Frame info moved above the plot
frame_info = gr.Textbox(
label="Frame Information & Metrics",
interactive=False,
value="",
lines=3,
)
gr.Markdown("### πŸ“Š Comprehensive Metrics Analysis")
metrics_plot = gr.Plot(
label="Multi-Metric Quality Analysis",
show_label=False,
)
# Status and frame info (moved below plots, initially hidden)
info_section = gr.Row(visible=False)
with info_section:
with gr.Column():
status_output = gr.Textbox(label="Status", interactive=False, lines=8)
# Event handlers
def load_videos_handler(video1, video2):
status, max_frames, frame1, frame2, info, plot = comparator.load_videos(
video1, video2
)
# Update slider
slider_update = gr.Slider(
minimum=0,
maximum=max_frames,
step=1,
value=0,
interactive=True if max_frames > 0 else False,
)
# Show/hide sections based on whether videos were loaded successfully
videos_loaded = max_frames > 0
return (
status, # status_output
slider_update, # frame_slider
frame1, # frame1_output
frame2, # frame2_output
info, # frame_info
plot, # metrics_plot
gr.Row(visible=videos_loaded), # frame_controls
gr.Row(visible=videos_loaded), # frame_display
gr.Row(visible=videos_loaded), # metrics_section
gr.Row(visible=videos_loaded), # info_section
)
def update_frames(frame_index):
if comparator.max_frames == 0:
return None, None, "No videos loaded", None
frame1, frame2 = comparator.get_frames_at_index(frame_index)
info = comparator.get_current_frame_info(frame_index)
plot = comparator.get_updated_plot(frame_index)
return frame1, frame2, info, plot
# Auto-load when examples populate the inputs
def auto_load_when_examples_change(video1, video2):
# Only auto-load if both inputs are provided (from examples)
if video1 and video2:
return load_videos_handler(video1, video2)
# If only one or no videos, return default empty state
return (
"Please upload videos or select an example", # status_output
gr.Slider(
minimum=0, maximum=0, step=1, value=0, interactive=False
), # frame_slider
None, # frame1_output
None, # frame2_output
"", # frame_info (now in metrics_section)
None, # metrics_plot
gr.Row(visible=False), # frame_controls
gr.Row(visible=False), # frame_display
gr.Row(visible=False), # metrics_section
gr.Row(visible=False), # info_section
)
# Connect events
load_btn.click(
fn=load_videos_handler,
inputs=[video1_input, video2_input],
outputs=[
status_output,
frame_slider,
frame1_output,
frame2_output,
frame_info,
metrics_plot,
frame_controls,
frame_display,
metrics_section,
info_section,
],
)
# Auto-load when both video inputs change (triggered by examples)
video1_input.change(
fn=auto_load_when_examples_change,
inputs=[video1_input, video2_input],
outputs=[
status_output,
frame_slider,
frame1_output,
frame2_output,
frame_info,
metrics_plot,
frame_controls,
frame_display,
metrics_section,
info_section,
],
)
video2_input.change(
fn=auto_load_when_examples_change,
inputs=[video1_input, video2_input],
outputs=[
status_output,
frame_slider,
frame1_output,
frame2_output,
frame_info,
metrics_plot,
frame_controls,
frame_display,
metrics_section,
info_section,
],
)
frame_slider.change(
fn=update_frames,
inputs=[frame_slider],
outputs=[frame1_output, frame2_output, frame_info, metrics_plot],
)
# Add comprehensive usage guide
gr.Markdown(f"""
### πŸ’‘ Professional Features:
- Upload videos in common formats (MP4, AVI, MOV, etc.) or use URLs
- **6 Quality Metrics**: SSIM, PSNR, MSE, pHash, Color Histogram, Sharpness
- **Comprehensive Visualization**: 6-panel analysis dashboard
- **Real-time Analysis**: Navigate frames with live metric updates
- **Smart Comparisons**: See which video performs better per metric
- **Correlation Analysis**: Understand relationships between metrics
{"- Click examples above for instant analysis!" if example_pairs else ""}
### πŸ“Š Metrics Explained (with Directionality):
- **SSIM** ↑: Structural Similarity (1.0 = identical, 0.0 = completely different)
- **PSNR** ↑: Peak Signal-to-Noise Ratio in dB (higher = better quality)
- **MSE** ↓: Mean Squared Error (lower = more similar)
- **pHash** ↑: Perceptual Hash similarity (1.0 = visually identical)
- **Color Histogram** ↑: Color distribution correlation (1.0 = identical colors)
- **Sharpness** ↑: Laplacian variance (higher = sharper images)
### 🎯 Quality Assessment Scale:
- 🟒 **Excellent**: SSIM β‰₯ 0.9, PSNR β‰₯ 40dB, MSE ≀ 50
- πŸ”΅ **Good**: SSIM β‰₯ 0.8, PSNR β‰₯ 30dB, MSE ≀ 100
- 🟑 **Fair**: SSIM β‰₯ 0.6, PSNR β‰₯ 20dB, MSE ≀ 200
- πŸ”΄ **Poor**: Below fair thresholds
### πŸ† Comparison Indicators:
- **V1/V2 Winner**: Shows which video performs better per metric
- **Significance**: Major (>20%), Moderate (10-20%), Minor (5-10%), Negligible (<5%)
- **Overall Match**: Combined quality assessment across all metrics
- **Arrows**: ↑ = Higher is Better, ↓ = Lower is Better
### πŸ“ Configuration:
{f"Loaded {len(example_pairs)} example comparisons from data.json" if example_pairs else "No examples found in data.json"}
{f"Available videos: {len(all_videos)} files" if all_videos else ""}
""")
return app
def main():
app = create_app()
app.launch(server_name="0.0.0.0", server_port=7860, share=False, debug=True)
if __name__ == "__main__":
main()