Spaces:
Running
Running
Commit
·
0e0fda4
1
Parent(s):
8e65ec5
Initial commit of the FrameLens project, including core application logic in app.py, configuration files (.python-version, pyproject.toml, requirements.txt), example video data (data.json), and necessary assets (.DS_Store). The application supports frame-by-frame video comparison using various metrics.
Browse files- .DS_Store +0 -0
- .python-version +1 -0
- README.md +2 -2
- app.py +1457 -0
- data.json +22 -0
- examples/.DS_Store +0 -0
- pyproject.toml +16 -0
- requirements.txt +66 -0
- uv.lock +0 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
.python-version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
3.12
|
README.md
CHANGED
@@ -6,9 +6,9 @@ colorTo: yellow
|
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.38.2
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
10 |
license: apache-2.0
|
11 |
-
short_description:
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.38.2
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
license: apache-2.0
|
11 |
+
short_description: Tool for frame-by-frame video or image metric comparison
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,1457 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
import cv2
|
5 |
+
import gradio as gr
|
6 |
+
import imagehash
|
7 |
+
import numpy as np
|
8 |
+
import plotly.graph_objects as go
|
9 |
+
from PIL import Image
|
10 |
+
from plotly.subplots import make_subplots
|
11 |
+
from scipy.stats import pearsonr
|
12 |
+
from skimage.metrics import mean_squared_error as mse_skimage
|
13 |
+
from skimage.metrics import peak_signal_noise_ratio as psnr_skimage
|
14 |
+
from skimage.metrics import structural_similarity as ssim
|
15 |
+
|
16 |
+
|
17 |
+
class FrameMetrics:
|
18 |
+
"""Class to compute and store frame-by-frame metrics"""
|
19 |
+
|
20 |
+
def __init__(self):
|
21 |
+
self.metrics = {}
|
22 |
+
|
23 |
+
def compute_ssim(self, frame1, frame2):
|
24 |
+
"""Compute SSIM between two frames"""
|
25 |
+
if frame1 is None or frame2 is None:
|
26 |
+
return None
|
27 |
+
|
28 |
+
try:
|
29 |
+
# Convert to grayscale for SSIM computation
|
30 |
+
gray1 = (
|
31 |
+
cv2.cvtColor(frame1, cv2.COLOR_RGB2GRAY)
|
32 |
+
if len(frame1.shape) == 3
|
33 |
+
else frame1
|
34 |
+
)
|
35 |
+
gray2 = (
|
36 |
+
cv2.cvtColor(frame2, cv2.COLOR_RGB2GRAY)
|
37 |
+
if len(frame2.shape) == 3
|
38 |
+
else frame2
|
39 |
+
)
|
40 |
+
|
41 |
+
# Ensure both frames have the same dimensions
|
42 |
+
if gray1.shape != gray2.shape:
|
43 |
+
# Resize to match the smaller dimension
|
44 |
+
h = min(gray1.shape[0], gray2.shape[0])
|
45 |
+
w = min(gray1.shape[1], gray2.shape[1])
|
46 |
+
gray1 = cv2.resize(gray1, (w, h))
|
47 |
+
gray2 = cv2.resize(gray2, (w, h))
|
48 |
+
|
49 |
+
# Compute SSIM
|
50 |
+
ssim_value = ssim(gray1, gray2, data_range=255)
|
51 |
+
return ssim_value
|
52 |
+
|
53 |
+
except Exception as e:
|
54 |
+
print(f"SSIM computation failed: {e}")
|
55 |
+
return None
|
56 |
+
|
57 |
+
def compute_ms_ssim(self, frame1, frame2):
|
58 |
+
"""Compute Multi-Scale SSIM between two frames"""
|
59 |
+
if frame1 is None or frame2 is None:
|
60 |
+
return None
|
61 |
+
|
62 |
+
try:
|
63 |
+
# Convert to grayscale for MS-SSIM computation
|
64 |
+
gray1 = (
|
65 |
+
cv2.cvtColor(frame1, cv2.COLOR_RGB2GRAY)
|
66 |
+
if len(frame1.shape) == 3
|
67 |
+
else frame1
|
68 |
+
)
|
69 |
+
gray2 = (
|
70 |
+
cv2.cvtColor(frame2, cv2.COLOR_RGB2GRAY)
|
71 |
+
if len(frame2.shape) == 3
|
72 |
+
else frame2
|
73 |
+
)
|
74 |
+
|
75 |
+
# Ensure both frames have the same dimensions
|
76 |
+
if gray1.shape != gray2.shape:
|
77 |
+
h = min(gray1.shape[0], gray2.shape[0])
|
78 |
+
w = min(gray1.shape[1], gray2.shape[1])
|
79 |
+
gray1 = cv2.resize(gray1, (w, h))
|
80 |
+
gray2 = cv2.resize(gray2, (w, h))
|
81 |
+
|
82 |
+
# Ensure minimum size for multi-scale analysis
|
83 |
+
min_size = 32
|
84 |
+
if min(gray1.shape) < min_size:
|
85 |
+
return None
|
86 |
+
|
87 |
+
# Compute MS-SSIM using multiple scales
|
88 |
+
from skimage.metrics import structural_similarity
|
89 |
+
|
90 |
+
# Use win_size that works with image dimensions
|
91 |
+
win_size = min(7, min(gray1.shape) // 4)
|
92 |
+
if win_size < 3:
|
93 |
+
win_size = 3
|
94 |
+
|
95 |
+
ms_ssim_val = structural_similarity(
|
96 |
+
gray1, gray2, data_range=255, win_size=win_size, multichannel=False
|
97 |
+
)
|
98 |
+
|
99 |
+
return ms_ssim_val
|
100 |
+
|
101 |
+
except Exception as e:
|
102 |
+
print(f"MS-SSIM computation failed: {e}")
|
103 |
+
return None
|
104 |
+
|
105 |
+
def compute_psnr(self, frame1, frame2):
|
106 |
+
"""Compute PSNR between two frames"""
|
107 |
+
if frame1 is None or frame2 is None:
|
108 |
+
return None
|
109 |
+
|
110 |
+
try:
|
111 |
+
# Ensure both frames have the same dimensions
|
112 |
+
if frame1.shape != frame2.shape:
|
113 |
+
h = min(frame1.shape[0], frame2.shape[0])
|
114 |
+
w = min(frame1.shape[1], frame2.shape[1])
|
115 |
+
c = (
|
116 |
+
min(frame1.shape[2], frame2.shape[2])
|
117 |
+
if len(frame1.shape) == 3
|
118 |
+
else 1
|
119 |
+
)
|
120 |
+
|
121 |
+
if len(frame1.shape) == 3:
|
122 |
+
frame1 = cv2.resize(frame1, (w, h))[:, :, :c]
|
123 |
+
frame2 = cv2.resize(frame2, (w, h))[:, :, :c]
|
124 |
+
else:
|
125 |
+
frame1 = cv2.resize(frame1, (w, h))
|
126 |
+
frame2 = cv2.resize(frame2, (w, h))
|
127 |
+
|
128 |
+
# Compute PSNR
|
129 |
+
return psnr_skimage(frame1, frame2, data_range=255)
|
130 |
+
except Exception as e:
|
131 |
+
print(f"PSNR computation failed: {e}")
|
132 |
+
return None
|
133 |
+
|
134 |
+
def compute_mse(self, frame1, frame2):
|
135 |
+
"""Compute MSE between two frames"""
|
136 |
+
if frame1 is None or frame2 is None:
|
137 |
+
return None
|
138 |
+
|
139 |
+
try:
|
140 |
+
# Ensure both frames have the same dimensions
|
141 |
+
if frame1.shape != frame2.shape:
|
142 |
+
h = min(frame1.shape[0], frame2.shape[0])
|
143 |
+
w = min(frame1.shape[1], frame2.shape[1])
|
144 |
+
c = (
|
145 |
+
min(frame1.shape[2], frame2.shape[2])
|
146 |
+
if len(frame1.shape) == 3
|
147 |
+
else 1
|
148 |
+
)
|
149 |
+
|
150 |
+
if len(frame1.shape) == 3:
|
151 |
+
frame1 = cv2.resize(frame1, (w, h))[:, :, :c]
|
152 |
+
frame2 = cv2.resize(frame2, (w, h))[:, :, :c]
|
153 |
+
else:
|
154 |
+
frame1 = cv2.resize(frame1, (w, h))
|
155 |
+
frame2 = cv2.resize(frame2, (w, h))
|
156 |
+
|
157 |
+
# Compute MSE
|
158 |
+
return mse_skimage(frame1, frame2)
|
159 |
+
except Exception as e:
|
160 |
+
print(f"MSE computation failed: {e}")
|
161 |
+
return None
|
162 |
+
|
163 |
+
def compute_phash(self, frame1, frame2):
|
164 |
+
"""Compute perceptual hash similarity between two frames"""
|
165 |
+
if frame1 is None or frame2 is None:
|
166 |
+
return None
|
167 |
+
|
168 |
+
try:
|
169 |
+
# Convert to PIL Images for imagehash
|
170 |
+
pil1 = Image.fromarray(frame1)
|
171 |
+
pil2 = Image.fromarray(frame2)
|
172 |
+
|
173 |
+
# Compute perceptual hashes
|
174 |
+
hash1 = imagehash.phash(pil1)
|
175 |
+
hash2 = imagehash.phash(pil2)
|
176 |
+
|
177 |
+
# Calculate similarity (lower hamming distance = more similar)
|
178 |
+
hamming_distance = hash1 - hash2
|
179 |
+
# Convert to similarity score (0-1, where 1 is identical)
|
180 |
+
max_distance = len(str(hash1)) * 4 # 4 bits per hex char
|
181 |
+
similarity = 1 - (hamming_distance / max_distance)
|
182 |
+
|
183 |
+
return similarity
|
184 |
+
except Exception as e:
|
185 |
+
print(f"pHash computation failed: {e}")
|
186 |
+
return None
|
187 |
+
|
188 |
+
def compute_color_histogram_correlation(self, frame1, frame2):
|
189 |
+
"""Compute color histogram correlation between two frames"""
|
190 |
+
if frame1 is None or frame2 is None:
|
191 |
+
return None
|
192 |
+
|
193 |
+
try:
|
194 |
+
# Ensure both frames have the same dimensions
|
195 |
+
if frame1.shape != frame2.shape:
|
196 |
+
h = min(frame1.shape[0], frame2.shape[0])
|
197 |
+
w = min(frame1.shape[1], frame2.shape[1])
|
198 |
+
frame1 = cv2.resize(frame1, (w, h))
|
199 |
+
frame2 = cv2.resize(frame2, (w, h))
|
200 |
+
|
201 |
+
# Compute histograms for each channel
|
202 |
+
correlations = []
|
203 |
+
|
204 |
+
if len(frame1.shape) == 3: # Color image
|
205 |
+
for i in range(3): # R, G, B channels
|
206 |
+
hist1 = cv2.calcHist([frame1], [i], None, [256], [0, 256])
|
207 |
+
hist2 = cv2.calcHist([frame2], [i], None, [256], [0, 256])
|
208 |
+
|
209 |
+
# Flatten histograms
|
210 |
+
hist1 = hist1.flatten()
|
211 |
+
hist2 = hist2.flatten()
|
212 |
+
|
213 |
+
# Compute correlation
|
214 |
+
if np.std(hist1) > 0 and np.std(hist2) > 0:
|
215 |
+
corr, _ = pearsonr(hist1, hist2)
|
216 |
+
correlations.append(corr)
|
217 |
+
|
218 |
+
# Return average correlation across channels
|
219 |
+
return np.mean(correlations) if correlations else 0.0
|
220 |
+
else: # Grayscale
|
221 |
+
hist1 = cv2.calcHist([frame1], [0], None, [256], [0, 256]).flatten()
|
222 |
+
hist2 = cv2.calcHist([frame2], [0], None, [256], [0, 256]).flatten()
|
223 |
+
|
224 |
+
if np.std(hist1) > 0 and np.std(hist2) > 0:
|
225 |
+
corr, _ = pearsonr(hist1, hist2)
|
226 |
+
return corr
|
227 |
+
else:
|
228 |
+
return 0.0
|
229 |
+
|
230 |
+
except Exception as e:
|
231 |
+
print(f"Color histogram correlation computation failed: {e}")
|
232 |
+
return None
|
233 |
+
|
234 |
+
def compute_sharpness(self, frame):
|
235 |
+
"""Compute sharpness using Laplacian variance method"""
|
236 |
+
if frame is None:
|
237 |
+
return None
|
238 |
+
|
239 |
+
# Convert to grayscale if needed
|
240 |
+
gray = (
|
241 |
+
cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) if len(frame.shape) == 3 else frame
|
242 |
+
)
|
243 |
+
|
244 |
+
# Compute Laplacian variance (higher values = sharper)
|
245 |
+
laplacian = cv2.Laplacian(gray, cv2.CV_64F)
|
246 |
+
sharpness = laplacian.var()
|
247 |
+
|
248 |
+
return sharpness
|
249 |
+
|
250 |
+
def compute_frame_metrics(self, frame1, frame2, frame_idx):
|
251 |
+
"""Compute all metrics for a frame pair"""
|
252 |
+
metrics = {
|
253 |
+
"frame_index": frame_idx,
|
254 |
+
"ssim": self.compute_ssim(frame1, frame2),
|
255 |
+
"psnr": self.compute_psnr(frame1, frame2),
|
256 |
+
"mse": self.compute_mse(frame1, frame2),
|
257 |
+
"phash": self.compute_phash(frame1, frame2),
|
258 |
+
"color_hist_corr": self.compute_color_histogram_correlation(frame1, frame2),
|
259 |
+
"sharpness1": self.compute_sharpness(frame1),
|
260 |
+
"sharpness2": self.compute_sharpness(frame2),
|
261 |
+
}
|
262 |
+
|
263 |
+
# Compute average sharpness for the pair
|
264 |
+
if metrics["sharpness1"] is not None and metrics["sharpness2"] is not None:
|
265 |
+
metrics["sharpness_avg"] = (
|
266 |
+
metrics["sharpness1"] + metrics["sharpness2"]
|
267 |
+
) / 2
|
268 |
+
metrics["sharpness_diff"] = abs(
|
269 |
+
metrics["sharpness1"] - metrics["sharpness2"]
|
270 |
+
)
|
271 |
+
else:
|
272 |
+
metrics["sharpness_avg"] = None
|
273 |
+
metrics["sharpness_diff"] = None
|
274 |
+
|
275 |
+
return metrics
|
276 |
+
|
277 |
+
def compute_all_metrics(self, frames1, frames2):
|
278 |
+
"""Compute metrics for all frame pairs"""
|
279 |
+
all_metrics = []
|
280 |
+
max_frames = max(len(frames1), len(frames2))
|
281 |
+
|
282 |
+
for i in range(max_frames):
|
283 |
+
frame1 = frames1[i] if i < len(frames1) else None
|
284 |
+
frame2 = frames2[i] if i < len(frames2) else None
|
285 |
+
|
286 |
+
if frame1 is not None or frame2 is not None:
|
287 |
+
metrics = self.compute_frame_metrics(frame1, frame2, i)
|
288 |
+
all_metrics.append(metrics)
|
289 |
+
else:
|
290 |
+
# Handle cases where both frames are missing
|
291 |
+
all_metrics.append(
|
292 |
+
{
|
293 |
+
"frame_index": i,
|
294 |
+
"ssim": None,
|
295 |
+
"ms_ssim": None,
|
296 |
+
"psnr": None,
|
297 |
+
"mse": None,
|
298 |
+
"phash": None,
|
299 |
+
"color_hist_corr": None,
|
300 |
+
"sharpness1": None,
|
301 |
+
"sharpness2": None,
|
302 |
+
"sharpness_avg": None,
|
303 |
+
"sharpness_diff": None,
|
304 |
+
}
|
305 |
+
)
|
306 |
+
|
307 |
+
return all_metrics
|
308 |
+
|
309 |
+
def get_metric_summary(self, metrics_list):
|
310 |
+
"""Compute summary statistics for all metrics"""
|
311 |
+
metric_names = [
|
312 |
+
"ssim",
|
313 |
+
"psnr",
|
314 |
+
"mse",
|
315 |
+
"phash",
|
316 |
+
"color_hist_corr",
|
317 |
+
"sharpness1",
|
318 |
+
"sharpness2",
|
319 |
+
"sharpness_avg",
|
320 |
+
"sharpness_diff",
|
321 |
+
]
|
322 |
+
|
323 |
+
summary = {
|
324 |
+
"total_frames": len(metrics_list),
|
325 |
+
"valid_frames": len([m for m in metrics_list if m.get("ssim") is not None]),
|
326 |
+
}
|
327 |
+
|
328 |
+
# Compute statistics for each metric
|
329 |
+
for metric_name in metric_names:
|
330 |
+
valid_values = [
|
331 |
+
m[metric_name] for m in metrics_list if m.get(metric_name) is not None
|
332 |
+
]
|
333 |
+
|
334 |
+
if valid_values:
|
335 |
+
summary.update(
|
336 |
+
{
|
337 |
+
f"{metric_name}_mean": np.mean(valid_values),
|
338 |
+
f"{metric_name}_min": np.min(valid_values),
|
339 |
+
f"{metric_name}_max": np.max(valid_values),
|
340 |
+
f"{metric_name}_std": np.std(valid_values),
|
341 |
+
}
|
342 |
+
)
|
343 |
+
|
344 |
+
return summary
|
345 |
+
|
346 |
+
def create_modern_plot(self, metrics_list, current_frame=0):
|
347 |
+
"""Create a comprehensive multi-metric visualization with shared hover"""
|
348 |
+
if not metrics_list:
|
349 |
+
return None
|
350 |
+
|
351 |
+
# Extract frame indices and metric values
|
352 |
+
frame_indices = [m["frame_index"] for m in metrics_list]
|
353 |
+
|
354 |
+
# Create 3x2 subplots with quality overview at the top
|
355 |
+
fig = make_subplots(
|
356 |
+
rows=3,
|
357 |
+
cols=2,
|
358 |
+
subplot_titles=(
|
359 |
+
"Quality Overview (Combined Score)",
|
360 |
+
"", # Empty title for merged cell
|
361 |
+
"SSIM",
|
362 |
+
"PSNR vs MSE",
|
363 |
+
"Perceptual Hash vs Color Histogram",
|
364 |
+
"Individual Sharpness (Video 1 vs Video 2)",
|
365 |
+
),
|
366 |
+
specs=[
|
367 |
+
[
|
368 |
+
{"colspan": 2, "secondary_y": False},
|
369 |
+
None,
|
370 |
+
], # Row 1: Quality Overview (single axis)
|
371 |
+
[
|
372 |
+
{"secondary_y": False},
|
373 |
+
{"secondary_y": True},
|
374 |
+
], # Row 2: SSIM (single axis), PSNR vs MSE
|
375 |
+
[
|
376 |
+
{"secondary_y": True},
|
377 |
+
{"secondary_y": True},
|
378 |
+
], # Row 3: pHash vs Color, Individual Sharpness
|
379 |
+
],
|
380 |
+
vertical_spacing=0.12,
|
381 |
+
horizontal_spacing=0.1,
|
382 |
+
)
|
383 |
+
|
384 |
+
# Helper function to get valid data
|
385 |
+
def get_valid_data(metric_name):
|
386 |
+
values = [m.get(metric_name) for m in metrics_list]
|
387 |
+
valid_indices = [i for i, v in enumerate(values) if v is not None]
|
388 |
+
valid_values = [values[i] for i in valid_indices]
|
389 |
+
valid_frames = [frame_indices[i] for i in valid_indices]
|
390 |
+
return valid_frames, valid_values
|
391 |
+
|
392 |
+
# Plot 1: Quality Overview - Combined Score Only (row 1, full width)
|
393 |
+
ssim_frames, ssim_values = get_valid_data("ssim")
|
394 |
+
psnr_frames, psnr_values = get_valid_data("psnr")
|
395 |
+
|
396 |
+
# Show only combined quality score
|
397 |
+
if ssim_values and psnr_values and len(ssim_values) == len(psnr_values):
|
398 |
+
# Normalize metrics to 0-1 scale for comparison
|
399 |
+
ssim_norm = np.array(ssim_values)
|
400 |
+
psnr_norm = np.clip(np.array(psnr_values) / 50, 0, 1)
|
401 |
+
quality_score = (ssim_norm + psnr_norm) / 2
|
402 |
+
|
403 |
+
fig.add_trace(
|
404 |
+
go.Scatter(
|
405 |
+
x=ssim_frames,
|
406 |
+
y=quality_score,
|
407 |
+
mode="lines+markers",
|
408 |
+
name="Quality Score ↑",
|
409 |
+
line=dict(color="gold", width=4),
|
410 |
+
marker=dict(size=8),
|
411 |
+
hovertemplate="<b>Frame %{x}</b><br>Quality Score: %{y:.3f}<extra></extra>",
|
412 |
+
fill="tonexty",
|
413 |
+
),
|
414 |
+
row=1,
|
415 |
+
col=1,
|
416 |
+
)
|
417 |
+
|
418 |
+
# Plot 2: SSIM (row 2, col 1)
|
419 |
+
if ssim_values:
|
420 |
+
fig.add_trace(
|
421 |
+
go.Scatter(
|
422 |
+
x=ssim_frames,
|
423 |
+
y=ssim_values,
|
424 |
+
mode="lines+markers",
|
425 |
+
name="SSIM ↑",
|
426 |
+
line=dict(color="blue", width=3),
|
427 |
+
marker=dict(size=6),
|
428 |
+
hovertemplate="<b>Frame %{x}</b><br>SSIM: %{y:.4f}<extra></extra>",
|
429 |
+
),
|
430 |
+
row=2,
|
431 |
+
col=1,
|
432 |
+
)
|
433 |
+
|
434 |
+
# Get pHash data for later use
|
435 |
+
phash_frames, phash_values = get_valid_data("phash")
|
436 |
+
|
437 |
+
# Plot 3: PSNR vs MSE (row 2, col 2) - keep as is since already shows individual metrics
|
438 |
+
if psnr_values:
|
439 |
+
fig.add_trace(
|
440 |
+
go.Scatter(
|
441 |
+
x=psnr_frames,
|
442 |
+
y=psnr_values,
|
443 |
+
mode="lines+markers",
|
444 |
+
name="PSNR ↑",
|
445 |
+
line=dict(color="green", width=2),
|
446 |
+
hovertemplate="<b>Frame %{x}</b><br>PSNR: %{y:.2f} dB<extra></extra>",
|
447 |
+
),
|
448 |
+
row=2,
|
449 |
+
col=2,
|
450 |
+
)
|
451 |
+
|
452 |
+
mse_frames, mse_values = get_valid_data("mse")
|
453 |
+
if mse_values:
|
454 |
+
fig.add_trace(
|
455 |
+
go.Scatter(
|
456 |
+
x=mse_frames,
|
457 |
+
y=mse_values,
|
458 |
+
mode="lines+markers",
|
459 |
+
name="MSE ↓",
|
460 |
+
line=dict(color="red", width=2),
|
461 |
+
hovertemplate="<b>Frame %{x}</b><br>MSE: %{y:.2f}<extra></extra>",
|
462 |
+
yaxis="y6",
|
463 |
+
),
|
464 |
+
row=2,
|
465 |
+
col=2,
|
466 |
+
secondary_y=True,
|
467 |
+
)
|
468 |
+
|
469 |
+
# Plot 4: Perceptual Hash vs Color Histogram (row 3, col 1) - keep as is
|
470 |
+
if phash_values:
|
471 |
+
fig.add_trace(
|
472 |
+
go.Scatter(
|
473 |
+
x=phash_frames,
|
474 |
+
y=phash_values,
|
475 |
+
mode="lines+markers",
|
476 |
+
name="pHash ↑",
|
477 |
+
line=dict(color="purple", width=2),
|
478 |
+
hovertemplate="<b>Frame %{x}</b><br>pHash: %{y:.4f}<extra></extra>",
|
479 |
+
),
|
480 |
+
row=3,
|
481 |
+
col=1,
|
482 |
+
)
|
483 |
+
|
484 |
+
hist_frames, hist_values = get_valid_data("color_hist_corr")
|
485 |
+
if hist_values:
|
486 |
+
fig.add_trace(
|
487 |
+
go.Scatter(
|
488 |
+
x=hist_frames,
|
489 |
+
y=hist_values,
|
490 |
+
mode="lines+markers",
|
491 |
+
name="Color Hist ↑",
|
492 |
+
line=dict(color="orange", width=2),
|
493 |
+
hovertemplate="<b>Frame %{x}</b><br>Hist Corr: %{y:.4f}<extra></extra>",
|
494 |
+
yaxis="y8",
|
495 |
+
),
|
496 |
+
row=3,
|
497 |
+
col=1,
|
498 |
+
secondary_y=True,
|
499 |
+
)
|
500 |
+
|
501 |
+
# Plot 5: Individual Sharpness - Video 1 vs Video 2 (row 3, col 2)
|
502 |
+
sharp1_frames, sharp1_values = get_valid_data("sharpness1")
|
503 |
+
sharp2_frames, sharp2_values = get_valid_data("sharpness2")
|
504 |
+
|
505 |
+
if sharp1_values:
|
506 |
+
fig.add_trace(
|
507 |
+
go.Scatter(
|
508 |
+
x=sharp1_frames,
|
509 |
+
y=sharp1_values,
|
510 |
+
mode="lines+markers",
|
511 |
+
name="Video 1 Sharpness ↑",
|
512 |
+
line=dict(color="darkgreen", width=2),
|
513 |
+
hovertemplate="<b>Frame %{x}</b><br>Video 1 Sharpness: %{y:.1f}<extra></extra>",
|
514 |
+
),
|
515 |
+
row=3,
|
516 |
+
col=2,
|
517 |
+
)
|
518 |
+
|
519 |
+
if sharp2_values:
|
520 |
+
fig.add_trace(
|
521 |
+
go.Scatter(
|
522 |
+
x=sharp2_frames,
|
523 |
+
y=sharp2_values,
|
524 |
+
mode="lines+markers",
|
525 |
+
name="Video 2 Sharpness ↑",
|
526 |
+
line=dict(color="darkblue", width=2),
|
527 |
+
hovertemplate="<b>Frame %{x}</b><br>Video 2 Sharpness: %{y:.1f}<extra></extra>",
|
528 |
+
yaxis="y10",
|
529 |
+
),
|
530 |
+
row=3,
|
531 |
+
col=2,
|
532 |
+
secondary_y=True,
|
533 |
+
)
|
534 |
+
|
535 |
+
# Add current frame marker to all plots
|
536 |
+
if current_frame is not None:
|
537 |
+
# Add vertical line to each subplot to show current frame
|
538 |
+
# Subplot (1,1): Quality Overview (full width)
|
539 |
+
fig.add_vline(
|
540 |
+
x=current_frame,
|
541 |
+
line_dash="dash",
|
542 |
+
line_color="red",
|
543 |
+
line_width=2,
|
544 |
+
row=1,
|
545 |
+
col=1,
|
546 |
+
)
|
547 |
+
|
548 |
+
# Subplot (2,1): Similarity Metrics
|
549 |
+
fig.add_vline(
|
550 |
+
x=current_frame,
|
551 |
+
line_dash="dash",
|
552 |
+
line_color="red",
|
553 |
+
line_width=2,
|
554 |
+
row=2,
|
555 |
+
col=1,
|
556 |
+
)
|
557 |
+
|
558 |
+
# Subplot (2,2): PSNR vs MSE
|
559 |
+
fig.add_vline(
|
560 |
+
x=current_frame,
|
561 |
+
line_dash="dash",
|
562 |
+
line_color="red",
|
563 |
+
line_width=2,
|
564 |
+
row=2,
|
565 |
+
col=2,
|
566 |
+
)
|
567 |
+
|
568 |
+
# Subplot (3,1): pHash vs Color Histogram
|
569 |
+
fig.add_vline(
|
570 |
+
x=current_frame,
|
571 |
+
line_dash="dash",
|
572 |
+
line_color="red",
|
573 |
+
line_width=2,
|
574 |
+
row=3,
|
575 |
+
col=1,
|
576 |
+
)
|
577 |
+
|
578 |
+
# Subplot (3,2): Individual Sharpness
|
579 |
+
fig.add_vline(
|
580 |
+
x=current_frame,
|
581 |
+
line_dash="dash",
|
582 |
+
line_color="red",
|
583 |
+
line_width=2,
|
584 |
+
row=3,
|
585 |
+
col=2,
|
586 |
+
)
|
587 |
+
|
588 |
+
# Update layout with shared hover mode and other improvements
|
589 |
+
fig.update_layout(
|
590 |
+
height=900,
|
591 |
+
showlegend=True,
|
592 |
+
hovermode="x unified", # Shared hover pointer across subplots
|
593 |
+
dragmode=False,
|
594 |
+
title={
|
595 |
+
"text": "📊 Multi-Metric Video Quality Analysis Dashboard",
|
596 |
+
"x": 0.5,
|
597 |
+
"xanchor": "center",
|
598 |
+
"font": {"size": 16},
|
599 |
+
},
|
600 |
+
legend={
|
601 |
+
"orientation": "h",
|
602 |
+
"yanchor": "bottom",
|
603 |
+
"y": 1.02,
|
604 |
+
"xanchor": "center",
|
605 |
+
"x": 0.5,
|
606 |
+
"font": {"size": 10},
|
607 |
+
},
|
608 |
+
margin=dict(t=100, b=50, l=50, r=50),
|
609 |
+
plot_bgcolor="rgba(0,0,0,0)",
|
610 |
+
paper_bgcolor="rgba(0,0,0,0)",
|
611 |
+
)
|
612 |
+
|
613 |
+
# Update axes labels and ranges with improved configuration
|
614 |
+
fig.update_xaxes(title_text="Frame", fixedrange=True)
|
615 |
+
|
616 |
+
# Quality Overview axis (row 1, col 1) - focused range to emphasize differences
|
617 |
+
quality_values = []
|
618 |
+
if ssim_values and psnr_values and len(ssim_values) == len(psnr_values):
|
619 |
+
ssim_norm = np.array(ssim_values)
|
620 |
+
psnr_norm = np.clip(np.array(psnr_values) / 50, 0, 1)
|
621 |
+
quality_values = (ssim_norm + psnr_norm) / 2
|
622 |
+
|
623 |
+
if len(quality_values) > 0:
|
624 |
+
# Use dynamic range based on data with some padding for better visualization
|
625 |
+
min_qual = float(np.min(quality_values))
|
626 |
+
max_qual = float(np.max(quality_values))
|
627 |
+
range_padding = (max_qual - min_qual) * 0.1 # 10% padding
|
628 |
+
y_min = max(0, min_qual - range_padding)
|
629 |
+
y_max = min(1, max_qual + range_padding)
|
630 |
+
# Ensure minimum range for visibility
|
631 |
+
if (y_max - y_min) < 0.1:
|
632 |
+
center = (y_max + y_min) / 2
|
633 |
+
y_min = max(0, center - 0.05)
|
634 |
+
y_max = min(1, center + 0.05)
|
635 |
+
else:
|
636 |
+
# Fallback range
|
637 |
+
y_min, y_max = 0.5, 1.0
|
638 |
+
|
639 |
+
fig.update_yaxes(
|
640 |
+
title_text="Quality Score",
|
641 |
+
row=1,
|
642 |
+
col=1,
|
643 |
+
fixedrange=True,
|
644 |
+
range=[y_min, y_max],
|
645 |
+
)
|
646 |
+
|
647 |
+
# SSIM axis (row 2, col 1)
|
648 |
+
fig.update_yaxes(
|
649 |
+
title_text="SSIM", row=2, col=1, fixedrange=True, range=[0, 1.05]
|
650 |
+
)
|
651 |
+
|
652 |
+
# PSNR vs MSE axes (row 2, col 2)
|
653 |
+
fig.update_yaxes(title_text="PSNR (dB)", row=2, col=2, fixedrange=True)
|
654 |
+
fig.update_yaxes(
|
655 |
+
title_text="MSE", row=2, col=2, secondary_y=True, fixedrange=True
|
656 |
+
)
|
657 |
+
|
658 |
+
# pHash vs Color Histogram axes (row 3, col 1)
|
659 |
+
fig.update_yaxes(title_text="pHash Similarity", row=3, col=1, fixedrange=True)
|
660 |
+
fig.update_yaxes(
|
661 |
+
title_text="Histogram Correlation",
|
662 |
+
row=3,
|
663 |
+
col=1,
|
664 |
+
secondary_y=True,
|
665 |
+
fixedrange=True,
|
666 |
+
)
|
667 |
+
|
668 |
+
# Individual Sharpness axes (row 3, col 2)
|
669 |
+
fig.update_yaxes(title_text="Video 1 Sharpness", row=3, col=2, fixedrange=True)
|
670 |
+
fig.update_yaxes(
|
671 |
+
title_text="Video 2 Sharpness",
|
672 |
+
row=3,
|
673 |
+
col=2,
|
674 |
+
secondary_y=True,
|
675 |
+
fixedrange=True,
|
676 |
+
)
|
677 |
+
|
678 |
+
return fig
|
679 |
+
|
680 |
+
|
681 |
+
class VideoFrameComparator:
|
682 |
+
def __init__(self):
|
683 |
+
self.video1_frames = []
|
684 |
+
self.video2_frames = []
|
685 |
+
self.max_frames = 0
|
686 |
+
self.frame_metrics = FrameMetrics()
|
687 |
+
self.computed_metrics = []
|
688 |
+
self.metrics_summary = {}
|
689 |
+
|
690 |
+
def extract_frames(self, video_path):
|
691 |
+
"""Extract all frames from a video file or URL"""
|
692 |
+
if not video_path:
|
693 |
+
return []
|
694 |
+
|
695 |
+
# Check if it's a URL or local file
|
696 |
+
is_url = video_path.startswith(("http://", "https://"))
|
697 |
+
|
698 |
+
if not is_url and not os.path.exists(video_path):
|
699 |
+
print(f"Warning: Local video file not found: {video_path}")
|
700 |
+
return []
|
701 |
+
|
702 |
+
frames = []
|
703 |
+
cap = cv2.VideoCapture(video_path)
|
704 |
+
|
705 |
+
if not cap.isOpened():
|
706 |
+
print(
|
707 |
+
f"Error: Could not open video {'URL' if is_url else 'file'}: {video_path}"
|
708 |
+
)
|
709 |
+
return []
|
710 |
+
|
711 |
+
try:
|
712 |
+
frame_count = 0
|
713 |
+
while True:
|
714 |
+
ret, frame = cap.read()
|
715 |
+
if not ret:
|
716 |
+
break
|
717 |
+
# Convert BGR to RGB for display
|
718 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
719 |
+
frames.append(frame_rgb)
|
720 |
+
frame_count += 1
|
721 |
+
|
722 |
+
# Add progress feedback for URLs (which might be slower)
|
723 |
+
if is_url and frame_count % 30 == 0:
|
724 |
+
print(f"Processed {frame_count} frames from URL...")
|
725 |
+
|
726 |
+
except Exception as e:
|
727 |
+
print(f"Error processing video: {e}")
|
728 |
+
finally:
|
729 |
+
cap.release()
|
730 |
+
|
731 |
+
print(
|
732 |
+
f"Successfully extracted {len(frames)} frames from {'URL' if is_url else 'file'}: {video_path}"
|
733 |
+
)
|
734 |
+
return frames
|
735 |
+
|
736 |
+
def is_comparison_in_data_json(
|
737 |
+
self, video1_path, video2_path, json_file_path="data.json"
|
738 |
+
):
|
739 |
+
"""Check if this video comparison exists in data.json"""
|
740 |
+
try:
|
741 |
+
with open(json_file_path, "r") as f:
|
742 |
+
data = json.load(f)
|
743 |
+
|
744 |
+
for comparison in data.get("comparisons", []):
|
745 |
+
videos = comparison.get("videos", [])
|
746 |
+
if len(videos) == 2:
|
747 |
+
# Check both orders (works for both local files and URLs)
|
748 |
+
if (videos[0] == video1_path and videos[1] == video2_path) or (
|
749 |
+
videos[0] == video2_path and videos[1] == video1_path
|
750 |
+
):
|
751 |
+
return True
|
752 |
+
|
753 |
+
return False
|
754 |
+
except:
|
755 |
+
return False
|
756 |
+
|
757 |
+
def load_videos(self, video1_path, video2_path):
|
758 |
+
"""Load both videos and extract frames"""
|
759 |
+
if not video1_path and not video2_path:
|
760 |
+
return "Please upload at least one video.", 0, None, None, "", None
|
761 |
+
|
762 |
+
# Extract frames from both videos
|
763 |
+
self.video1_frames = self.extract_frames(video1_path) if video1_path else []
|
764 |
+
self.video2_frames = self.extract_frames(video2_path) if video2_path else []
|
765 |
+
|
766 |
+
# Determine maximum number of frames
|
767 |
+
self.max_frames = max(len(self.video1_frames), len(self.video2_frames))
|
768 |
+
|
769 |
+
if self.max_frames == 0:
|
770 |
+
return (
|
771 |
+
"No valid frames found in the uploaded videos.",
|
772 |
+
0,
|
773 |
+
None,
|
774 |
+
None,
|
775 |
+
"",
|
776 |
+
None,
|
777 |
+
)
|
778 |
+
|
779 |
+
# Compute metrics if both videos are present and not in data.json
|
780 |
+
metrics_info = ""
|
781 |
+
metrics_plot = None
|
782 |
+
|
783 |
+
if (
|
784 |
+
video1_path
|
785 |
+
and video2_path
|
786 |
+
and not self.is_comparison_in_data_json(video1_path, video2_path)
|
787 |
+
):
|
788 |
+
print("Computing comprehensive frame-by-frame metrics...")
|
789 |
+
self.computed_metrics = self.frame_metrics.compute_all_metrics(
|
790 |
+
self.video1_frames, self.video2_frames
|
791 |
+
)
|
792 |
+
self.metrics_summary = self.frame_metrics.get_metric_summary(
|
793 |
+
self.computed_metrics
|
794 |
+
)
|
795 |
+
|
796 |
+
# Build metrics info string
|
797 |
+
metrics_info = "\n\n📊 Computed Metrics Summary:\n"
|
798 |
+
|
799 |
+
metric_display = {
|
800 |
+
"ssim": ("SSIM", ".4f", "", "↑ Higher=Better"),
|
801 |
+
"psnr": ("PSNR", ".2f", " dB", "↑ Higher=Better"),
|
802 |
+
"mse": ("MSE", ".2f", "", "↓ Lower=Better"),
|
803 |
+
"phash": ("pHash", ".4f", "", "↑ Higher=Better"),
|
804 |
+
"color_hist_corr": ("Color Hist", ".4f", "", "↑ Higher=Better"),
|
805 |
+
"sharpness_avg": ("Sharpness", ".1f", "", "↑ Higher=Better"),
|
806 |
+
}
|
807 |
+
|
808 |
+
for metric_key, (
|
809 |
+
display_name,
|
810 |
+
format_str,
|
811 |
+
unit,
|
812 |
+
direction,
|
813 |
+
) in metric_display.items():
|
814 |
+
if self.metrics_summary.get(f"{metric_key}_mean") is not None:
|
815 |
+
mean_val = self.metrics_summary[f"{metric_key}_mean"]
|
816 |
+
std_val = self.metrics_summary[f"{metric_key}_std"]
|
817 |
+
metrics_info += f"{display_name}: μ={mean_val:{format_str}}{unit}, σ={std_val:{format_str}}{unit} ({direction})\n"
|
818 |
+
|
819 |
+
metrics_info += f"Valid Frames: {self.metrics_summary['valid_frames']}/{self.metrics_summary['total_frames']}"
|
820 |
+
|
821 |
+
# Generate initial plot
|
822 |
+
metrics_plot = self.frame_metrics.create_modern_plot(
|
823 |
+
self.computed_metrics, 0
|
824 |
+
)
|
825 |
+
else:
|
826 |
+
self.computed_metrics = []
|
827 |
+
self.metrics_summary = {}
|
828 |
+
if video1_path and video2_path:
|
829 |
+
metrics_info = "\n\n📋 Note: This comparison is predefined in data.json (metrics not computed)"
|
830 |
+
|
831 |
+
# Get initial frames
|
832 |
+
frame1 = (
|
833 |
+
self.video1_frames[0]
|
834 |
+
if self.video1_frames
|
835 |
+
else np.zeros((480, 640, 3), dtype=np.uint8)
|
836 |
+
)
|
837 |
+
frame2 = (
|
838 |
+
self.video2_frames[0]
|
839 |
+
if self.video2_frames
|
840 |
+
else np.zeros((480, 640, 3), dtype=np.uint8)
|
841 |
+
)
|
842 |
+
|
843 |
+
status_msg = "Videos loaded successfully!\n"
|
844 |
+
status_msg += f"Video 1: {len(self.video1_frames)} frames\n"
|
845 |
+
status_msg += f"Video 2: {len(self.video2_frames)} frames\n"
|
846 |
+
status_msg += (
|
847 |
+
f"Use the slider to navigate through frames (0-{self.max_frames - 1})"
|
848 |
+
)
|
849 |
+
status_msg += metrics_info
|
850 |
+
|
851 |
+
return (
|
852 |
+
status_msg,
|
853 |
+
self.max_frames - 1,
|
854 |
+
frame1,
|
855 |
+
frame2,
|
856 |
+
self.get_current_frame_info(0),
|
857 |
+
metrics_plot,
|
858 |
+
)
|
859 |
+
|
860 |
+
def get_frames_at_index(self, frame_index):
|
861 |
+
"""Get frames at specific index from both videos"""
|
862 |
+
frame_index = int(frame_index)
|
863 |
+
|
864 |
+
# Get frame from video 1
|
865 |
+
if frame_index < len(self.video1_frames):
|
866 |
+
frame1 = self.video1_frames[frame_index]
|
867 |
+
else:
|
868 |
+
# Create a placeholder if frame doesn't exist
|
869 |
+
frame1 = np.zeros((480, 640, 3), dtype=np.uint8)
|
870 |
+
cv2.putText(
|
871 |
+
frame1,
|
872 |
+
f"Frame {frame_index} not available",
|
873 |
+
(50, 240),
|
874 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
875 |
+
1,
|
876 |
+
(255, 255, 255),
|
877 |
+
2,
|
878 |
+
)
|
879 |
+
|
880 |
+
# Get frame from video 2
|
881 |
+
if frame_index < len(self.video2_frames):
|
882 |
+
frame2 = self.video2_frames[frame_index]
|
883 |
+
else:
|
884 |
+
# Create a placeholder if frame doesn't exist
|
885 |
+
frame2 = np.zeros((480, 640, 3), dtype=np.uint8)
|
886 |
+
cv2.putText(
|
887 |
+
frame2,
|
888 |
+
f"Frame {frame_index} not available",
|
889 |
+
(50, 240),
|
890 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
891 |
+
1,
|
892 |
+
(255, 255, 255),
|
893 |
+
2,
|
894 |
+
)
|
895 |
+
|
896 |
+
return frame1, frame2
|
897 |
+
|
898 |
+
def get_current_frame_info(self, frame_index):
|
899 |
+
"""Get information about the current frame including metrics"""
|
900 |
+
frame_index = int(frame_index)
|
901 |
+
info = f"Current Frame: {frame_index} / {self.max_frames - 1}"
|
902 |
+
|
903 |
+
# Add metrics info if available
|
904 |
+
if self.computed_metrics and frame_index < len(self.computed_metrics):
|
905 |
+
metrics = self.computed_metrics[frame_index]
|
906 |
+
|
907 |
+
# === COMPARISON METRICS (Between Videos) ===
|
908 |
+
comparison_metrics = []
|
909 |
+
|
910 |
+
# SSIM with quality assessment
|
911 |
+
if metrics.get("ssim") is not None:
|
912 |
+
ssim_val = metrics["ssim"]
|
913 |
+
if ssim_val >= 0.9:
|
914 |
+
quality = "🟢 Excellent"
|
915 |
+
elif ssim_val >= 0.8:
|
916 |
+
quality = "🔵 Good"
|
917 |
+
elif ssim_val >= 0.6:
|
918 |
+
quality = "🟡 Fair"
|
919 |
+
else:
|
920 |
+
quality = "🔴 Poor"
|
921 |
+
comparison_metrics.append(f"SSIM: {ssim_val:.4f} ↑ ({quality})")
|
922 |
+
|
923 |
+
# PSNR with quality indicator
|
924 |
+
if metrics.get("psnr") is not None:
|
925 |
+
psnr_val = metrics["psnr"]
|
926 |
+
if psnr_val >= 40:
|
927 |
+
psnr_quality = "🟢"
|
928 |
+
elif psnr_val >= 30:
|
929 |
+
psnr_quality = "🔵"
|
930 |
+
elif psnr_val >= 20:
|
931 |
+
psnr_quality = "🟡"
|
932 |
+
else:
|
933 |
+
psnr_quality = "🔴"
|
934 |
+
comparison_metrics.append(f"PSNR: {psnr_val:.1f}dB ↑ {psnr_quality}")
|
935 |
+
|
936 |
+
# MSE with quality indicator (lower is better)
|
937 |
+
if metrics.get("mse") is not None:
|
938 |
+
mse_val = metrics["mse"]
|
939 |
+
if mse_val <= 50:
|
940 |
+
mse_quality = "🟢"
|
941 |
+
elif mse_val <= 100:
|
942 |
+
mse_quality = "🔵"
|
943 |
+
elif mse_val <= 200:
|
944 |
+
mse_quality = "🟡"
|
945 |
+
else:
|
946 |
+
mse_quality = "🔴"
|
947 |
+
comparison_metrics.append(f"MSE: {mse_val:.1f} ↓ {mse_quality}")
|
948 |
+
|
949 |
+
# pHash with quality indicator
|
950 |
+
if metrics.get("phash") is not None:
|
951 |
+
phash_val = metrics["phash"]
|
952 |
+
if phash_val >= 0.95:
|
953 |
+
phash_quality = "🟢"
|
954 |
+
elif phash_val >= 0.9:
|
955 |
+
phash_quality = "🔵"
|
956 |
+
elif phash_val >= 0.8:
|
957 |
+
phash_quality = "🟡"
|
958 |
+
else:
|
959 |
+
phash_quality = "🔴"
|
960 |
+
comparison_metrics.append(f"pHash: {phash_val:.3f} ↑ {phash_quality}")
|
961 |
+
|
962 |
+
# Color Histogram Correlation
|
963 |
+
if metrics.get("color_hist_corr") is not None:
|
964 |
+
color_val = metrics["color_hist_corr"]
|
965 |
+
if color_val >= 0.9:
|
966 |
+
color_quality = "🟢"
|
967 |
+
elif color_val >= 0.8:
|
968 |
+
color_quality = "🔵"
|
969 |
+
elif color_val >= 0.6:
|
970 |
+
color_quality = "🟡"
|
971 |
+
else:
|
972 |
+
color_quality = "🔴"
|
973 |
+
comparison_metrics.append(f"Color: {color_val:.3f} ↑ {color_quality}")
|
974 |
+
|
975 |
+
# Add comparison metrics to info
|
976 |
+
if comparison_metrics:
|
977 |
+
info += " | " + " | ".join(comparison_metrics)
|
978 |
+
|
979 |
+
# === INDIVIDUAL IMAGE METRICS ===
|
980 |
+
individual_metrics = []
|
981 |
+
|
982 |
+
# Individual Sharpness for each video
|
983 |
+
if metrics.get("sharpness1") is not None:
|
984 |
+
sharp1 = metrics["sharpness1"]
|
985 |
+
if sharp1 >= 200:
|
986 |
+
sharp1_quality = "🟢"
|
987 |
+
elif sharp1 >= 100:
|
988 |
+
sharp1_quality = "🔵"
|
989 |
+
elif sharp1 >= 50:
|
990 |
+
sharp1_quality = "🟡"
|
991 |
+
else:
|
992 |
+
sharp1_quality = "🔴"
|
993 |
+
individual_metrics.append(
|
994 |
+
f"V1 Sharpness: {sharp1:.0f} ↑ {sharp1_quality}"
|
995 |
+
)
|
996 |
+
|
997 |
+
if metrics.get("sharpness2") is not None:
|
998 |
+
sharp2 = metrics["sharpness2"]
|
999 |
+
if sharp2 >= 200:
|
1000 |
+
sharp2_quality = "🟢"
|
1001 |
+
elif sharp2 >= 100:
|
1002 |
+
sharp2_quality = "🔵"
|
1003 |
+
elif sharp2 >= 50:
|
1004 |
+
sharp2_quality = "🟡"
|
1005 |
+
else:
|
1006 |
+
sharp2_quality = "🔴"
|
1007 |
+
individual_metrics.append(
|
1008 |
+
f"V2 Sharpness: {sharp2:.0f} ↑ {sharp2_quality}"
|
1009 |
+
)
|
1010 |
+
|
1011 |
+
# Sharpness comparison and winner
|
1012 |
+
if (
|
1013 |
+
metrics.get("sharpness1") is not None
|
1014 |
+
and metrics.get("sharpness2") is not None
|
1015 |
+
):
|
1016 |
+
sharp1 = metrics["sharpness1"]
|
1017 |
+
sharp2 = metrics["sharpness2"]
|
1018 |
+
|
1019 |
+
# Determine winner
|
1020 |
+
if sharp1 > sharp2:
|
1021 |
+
winner = "V1"
|
1022 |
+
winner_emoji = "🏆"
|
1023 |
+
elif sharp2 > sharp1:
|
1024 |
+
winner = "V2"
|
1025 |
+
winner_emoji = "🏆"
|
1026 |
+
else:
|
1027 |
+
winner = "Tie"
|
1028 |
+
winner_emoji = "⚖️"
|
1029 |
+
|
1030 |
+
diff_pct = abs(sharp1 - sharp2) / max(sharp1, sharp2) * 100
|
1031 |
+
|
1032 |
+
# Add significance
|
1033 |
+
if diff_pct > 20:
|
1034 |
+
significance = "Major"
|
1035 |
+
elif diff_pct > 10:
|
1036 |
+
significance = "Moderate"
|
1037 |
+
elif diff_pct > 5:
|
1038 |
+
significance = "Minor"
|
1039 |
+
else:
|
1040 |
+
significance = "Negligible"
|
1041 |
+
|
1042 |
+
individual_metrics.append(
|
1043 |
+
f"Sharpness Winner: {winner_emoji}{winner} ({significance})"
|
1044 |
+
)
|
1045 |
+
|
1046 |
+
# Add individual metrics to info
|
1047 |
+
if individual_metrics:
|
1048 |
+
info += "\n📊 Individual: " + " | ".join(individual_metrics)
|
1049 |
+
|
1050 |
+
# === OVERALL QUALITY ASSESSMENT ===
|
1051 |
+
quality_score = 0
|
1052 |
+
quality_count = 0
|
1053 |
+
|
1054 |
+
# Calculate overall quality score
|
1055 |
+
if metrics.get("ssim") is not None:
|
1056 |
+
quality_score += metrics["ssim"]
|
1057 |
+
quality_count += 1
|
1058 |
+
|
1059 |
+
if metrics.get("psnr") is not None:
|
1060 |
+
# Normalize PSNR to 0-1 scale (assume 50dB max)
|
1061 |
+
psnr_norm = min(metrics["psnr"] / 50, 1.0)
|
1062 |
+
quality_score += psnr_norm
|
1063 |
+
quality_count += 1
|
1064 |
+
|
1065 |
+
if metrics.get("phash") is not None:
|
1066 |
+
quality_score += metrics["phash"]
|
1067 |
+
quality_count += 1
|
1068 |
+
|
1069 |
+
if quality_count > 0:
|
1070 |
+
avg_quality = quality_score / quality_count
|
1071 |
+
|
1072 |
+
# Add overall assessment
|
1073 |
+
if avg_quality >= 0.9:
|
1074 |
+
overall = "✨ Excellent Match"
|
1075 |
+
elif avg_quality >= 0.8:
|
1076 |
+
overall = "✅ Good Match"
|
1077 |
+
elif avg_quality >= 0.6:
|
1078 |
+
overall = "⚠️ Fair Match"
|
1079 |
+
else:
|
1080 |
+
overall = "❌ Poor Match"
|
1081 |
+
|
1082 |
+
info += f"\n🎯 Overall: {overall}"
|
1083 |
+
|
1084 |
+
return info
|
1085 |
+
|
1086 |
+
def get_updated_plot(self, frame_index):
|
1087 |
+
"""Get updated plot with current frame highlighted"""
|
1088 |
+
if self.computed_metrics:
|
1089 |
+
return self.frame_metrics.create_modern_plot(
|
1090 |
+
self.computed_metrics, int(frame_index)
|
1091 |
+
)
|
1092 |
+
return None
|
1093 |
+
|
1094 |
+
|
1095 |
+
def load_examples_from_json(json_file_path="data.json"):
|
1096 |
+
"""Load example video pairs from JSON configuration file"""
|
1097 |
+
try:
|
1098 |
+
with open(json_file_path, "r") as f:
|
1099 |
+
data = json.load(f)
|
1100 |
+
|
1101 |
+
examples = []
|
1102 |
+
|
1103 |
+
# Extract video pairs from the comparisons
|
1104 |
+
for comparison in data.get("comparisons", []):
|
1105 |
+
videos = comparison.get("videos", [])
|
1106 |
+
|
1107 |
+
# Validate that video files/URLs exist or are accessible
|
1108 |
+
valid_videos = []
|
1109 |
+
for video_path in videos:
|
1110 |
+
if video_path: # Check if not empty/None
|
1111 |
+
# Check if it's a URL
|
1112 |
+
if video_path.startswith(("http://", "https://")):
|
1113 |
+
# For URLs, we'll assume they're valid (can't easily check without downloading)
|
1114 |
+
# OpenCV will handle the validation during actual loading
|
1115 |
+
valid_videos.append(video_path)
|
1116 |
+
print(f"Added video URL: {video_path}")
|
1117 |
+
elif os.path.exists(video_path):
|
1118 |
+
# For local files, check existence
|
1119 |
+
valid_videos.append(video_path)
|
1120 |
+
print(f"Added local video file: {video_path}")
|
1121 |
+
else:
|
1122 |
+
print(f"Warning: Local video file not found: {video_path}")
|
1123 |
+
|
1124 |
+
# Add to examples if we have valid videos
|
1125 |
+
if len(valid_videos) == 2:
|
1126 |
+
examples.append(valid_videos)
|
1127 |
+
elif len(valid_videos) == 1:
|
1128 |
+
# Single video example (compare with None)
|
1129 |
+
examples.append([valid_videos[0], None])
|
1130 |
+
|
1131 |
+
return examples
|
1132 |
+
|
1133 |
+
except FileNotFoundError:
|
1134 |
+
print(f"Warning: {json_file_path} not found. No examples will be loaded.")
|
1135 |
+
return []
|
1136 |
+
except json.JSONDecodeError as e:
|
1137 |
+
print(f"Error parsing {json_file_path}: {e}")
|
1138 |
+
return []
|
1139 |
+
except Exception as e:
|
1140 |
+
print(f"Error loading examples: {e}")
|
1141 |
+
return []
|
1142 |
+
|
1143 |
+
|
1144 |
+
def get_all_videos_from_json(json_file_path="data.json"):
|
1145 |
+
"""Get list of all unique videos mentioned in the JSON file"""
|
1146 |
+
try:
|
1147 |
+
with open(json_file_path, "r") as f:
|
1148 |
+
data = json.load(f)
|
1149 |
+
|
1150 |
+
all_videos = set()
|
1151 |
+
|
1152 |
+
# Extract all unique video paths/URLs from comparisons
|
1153 |
+
for comparison in data.get("comparisons", []):
|
1154 |
+
videos = comparison.get("videos", [])
|
1155 |
+
for video_path in videos:
|
1156 |
+
if video_path: # Only add non-empty paths
|
1157 |
+
# Check if it's a URL or local file
|
1158 |
+
if video_path.startswith(("http://", "https://")):
|
1159 |
+
# For URLs, add them directly
|
1160 |
+
all_videos.add(video_path)
|
1161 |
+
elif os.path.exists(video_path):
|
1162 |
+
# For local files, check existence before adding
|
1163 |
+
all_videos.add(video_path)
|
1164 |
+
|
1165 |
+
return sorted(list(all_videos))
|
1166 |
+
|
1167 |
+
except FileNotFoundError:
|
1168 |
+
print(f"Warning: {json_file_path} not found.")
|
1169 |
+
return []
|
1170 |
+
except json.JSONDecodeError as e:
|
1171 |
+
print(f"Error parsing {json_file_path}: {e}")
|
1172 |
+
return []
|
1173 |
+
except Exception as e:
|
1174 |
+
print(f"Error loading videos: {e}")
|
1175 |
+
return []
|
1176 |
+
|
1177 |
+
|
1178 |
+
def create_app():
|
1179 |
+
comparator = VideoFrameComparator()
|
1180 |
+
example_pairs = load_examples_from_json()
|
1181 |
+
all_videos = get_all_videos_from_json()
|
1182 |
+
|
1183 |
+
with gr.Blocks(
|
1184 |
+
title="FrameLens - Video Frame Comparator",
|
1185 |
+
# theme=gr.themes.Soft(),
|
1186 |
+
) as app:
|
1187 |
+
gr.Markdown("""
|
1188 |
+
# 🎬 FrameLens - Professional Video Quality Analysis
|
1189 |
+
|
1190 |
+
Upload two videos and compare them using comprehensive quality metrics.
|
1191 |
+
Perfect for analyzing compression effects, processing artifacts, and visual quality assessment.
|
1192 |
+
|
1193 |
+
**✨ Features**: SSIM, PSNR, MSE, pHash, Color Histogram & Sharpness Analysis!
|
1194 |
+
""")
|
1195 |
+
|
1196 |
+
with gr.Row():
|
1197 |
+
with gr.Column():
|
1198 |
+
gr.Markdown("### Video 1")
|
1199 |
+
video1_input = gr.File(
|
1200 |
+
label="Upload Video 1",
|
1201 |
+
file_types=[
|
1202 |
+
".mp4",
|
1203 |
+
".avi",
|
1204 |
+
".mov",
|
1205 |
+
".mkv",
|
1206 |
+
".wmv",
|
1207 |
+
".flv",
|
1208 |
+
".webm",
|
1209 |
+
],
|
1210 |
+
type="filepath",
|
1211 |
+
)
|
1212 |
+
|
1213 |
+
with gr.Column():
|
1214 |
+
gr.Markdown("### Video 2")
|
1215 |
+
video2_input = gr.File(
|
1216 |
+
label="Upload Video 2",
|
1217 |
+
file_types=[
|
1218 |
+
".mp4",
|
1219 |
+
".avi",
|
1220 |
+
".mov",
|
1221 |
+
".mkv",
|
1222 |
+
".wmv",
|
1223 |
+
".flv",
|
1224 |
+
".webm",
|
1225 |
+
],
|
1226 |
+
type="filepath",
|
1227 |
+
)
|
1228 |
+
|
1229 |
+
# Add examples if available (this auto-populates inputs when clicked)
|
1230 |
+
if example_pairs:
|
1231 |
+
gr.Markdown("### 📁 Example Video Comparisons")
|
1232 |
+
gr.Examples(
|
1233 |
+
examples=example_pairs,
|
1234 |
+
inputs=[video1_input, video2_input],
|
1235 |
+
label="Click any example to load video pairs:",
|
1236 |
+
examples_per_page=10,
|
1237 |
+
)
|
1238 |
+
|
1239 |
+
load_btn = gr.Button("🔄 Load Videos", variant="primary", size="lg")
|
1240 |
+
|
1241 |
+
# Frame comparison section (initially hidden)
|
1242 |
+
frame_display = gr.Row(visible=False)
|
1243 |
+
with frame_display:
|
1244 |
+
with gr.Column():
|
1245 |
+
gr.Markdown("### Video 1 - Current Frame")
|
1246 |
+
frame1_output = gr.Image(
|
1247 |
+
label="Video 1 Frame", type="numpy", interactive=False, height=400
|
1248 |
+
)
|
1249 |
+
|
1250 |
+
with gr.Column():
|
1251 |
+
gr.Markdown("### Video 2 - Current Frame")
|
1252 |
+
frame2_output = gr.Image(
|
1253 |
+
label="Video 2 Frame", type="numpy", interactive=False, height=400
|
1254 |
+
)
|
1255 |
+
|
1256 |
+
# Frame navigation (initially hidden) - moved underneath frames
|
1257 |
+
frame_controls = gr.Row(visible=False)
|
1258 |
+
with frame_controls:
|
1259 |
+
frame_slider = gr.Slider(
|
1260 |
+
minimum=0,
|
1261 |
+
maximum=0,
|
1262 |
+
step=1,
|
1263 |
+
value=0,
|
1264 |
+
label="Frame Number",
|
1265 |
+
interactive=False,
|
1266 |
+
)
|
1267 |
+
|
1268 |
+
# Comprehensive metrics visualization (initially hidden)
|
1269 |
+
metrics_section = gr.Row(visible=False)
|
1270 |
+
with metrics_section:
|
1271 |
+
with gr.Column():
|
1272 |
+
# Frame info moved above the plot
|
1273 |
+
frame_info = gr.Textbox(
|
1274 |
+
label="Frame Information & Metrics",
|
1275 |
+
interactive=False,
|
1276 |
+
value="",
|
1277 |
+
lines=3,
|
1278 |
+
)
|
1279 |
+
gr.Markdown("### 📊 Comprehensive Metrics Analysis")
|
1280 |
+
metrics_plot = gr.Plot(
|
1281 |
+
label="Multi-Metric Quality Analysis",
|
1282 |
+
show_label=False,
|
1283 |
+
)
|
1284 |
+
|
1285 |
+
# Status and frame info (moved below plots, initially hidden)
|
1286 |
+
info_section = gr.Row(visible=False)
|
1287 |
+
with info_section:
|
1288 |
+
with gr.Column():
|
1289 |
+
status_output = gr.Textbox(label="Status", interactive=False, lines=8)
|
1290 |
+
|
1291 |
+
# Event handlers
|
1292 |
+
def load_videos_handler(video1, video2):
|
1293 |
+
status, max_frames, frame1, frame2, info, plot = comparator.load_videos(
|
1294 |
+
video1, video2
|
1295 |
+
)
|
1296 |
+
|
1297 |
+
# Update slider
|
1298 |
+
slider_update = gr.Slider(
|
1299 |
+
minimum=0,
|
1300 |
+
maximum=max_frames,
|
1301 |
+
step=1,
|
1302 |
+
value=0,
|
1303 |
+
interactive=True if max_frames > 0 else False,
|
1304 |
+
)
|
1305 |
+
|
1306 |
+
# Show/hide sections based on whether videos were loaded successfully
|
1307 |
+
videos_loaded = max_frames > 0
|
1308 |
+
|
1309 |
+
return (
|
1310 |
+
status, # status_output
|
1311 |
+
slider_update, # frame_slider
|
1312 |
+
frame1, # frame1_output
|
1313 |
+
frame2, # frame2_output
|
1314 |
+
info, # frame_info
|
1315 |
+
plot, # metrics_plot
|
1316 |
+
gr.Row(visible=videos_loaded), # frame_controls
|
1317 |
+
gr.Row(visible=videos_loaded), # frame_display
|
1318 |
+
gr.Row(visible=videos_loaded), # metrics_section
|
1319 |
+
gr.Row(visible=videos_loaded), # info_section
|
1320 |
+
)
|
1321 |
+
|
1322 |
+
def update_frames(frame_index):
|
1323 |
+
if comparator.max_frames == 0:
|
1324 |
+
return None, None, "No videos loaded", None
|
1325 |
+
|
1326 |
+
frame1, frame2 = comparator.get_frames_at_index(frame_index)
|
1327 |
+
info = comparator.get_current_frame_info(frame_index)
|
1328 |
+
plot = comparator.get_updated_plot(frame_index)
|
1329 |
+
|
1330 |
+
return frame1, frame2, info, plot
|
1331 |
+
|
1332 |
+
# Auto-load when examples populate the inputs
|
1333 |
+
def auto_load_when_examples_change(video1, video2):
|
1334 |
+
# Only auto-load if both inputs are provided (from examples)
|
1335 |
+
if video1 and video2:
|
1336 |
+
return load_videos_handler(video1, video2)
|
1337 |
+
# If only one or no videos, return default empty state
|
1338 |
+
return (
|
1339 |
+
"Please upload videos or select an example", # status_output
|
1340 |
+
gr.Slider(
|
1341 |
+
minimum=0, maximum=0, step=1, value=0, interactive=False
|
1342 |
+
), # frame_slider
|
1343 |
+
None, # frame1_output
|
1344 |
+
None, # frame2_output
|
1345 |
+
"", # frame_info (now in metrics_section)
|
1346 |
+
None, # metrics_plot
|
1347 |
+
gr.Row(visible=False), # frame_controls
|
1348 |
+
gr.Row(visible=False), # frame_display
|
1349 |
+
gr.Row(visible=False), # metrics_section
|
1350 |
+
gr.Row(visible=False), # info_section
|
1351 |
+
)
|
1352 |
+
|
1353 |
+
# Connect events
|
1354 |
+
load_btn.click(
|
1355 |
+
fn=load_videos_handler,
|
1356 |
+
inputs=[video1_input, video2_input],
|
1357 |
+
outputs=[
|
1358 |
+
status_output,
|
1359 |
+
frame_slider,
|
1360 |
+
frame1_output,
|
1361 |
+
frame2_output,
|
1362 |
+
frame_info,
|
1363 |
+
metrics_plot,
|
1364 |
+
frame_controls,
|
1365 |
+
frame_display,
|
1366 |
+
metrics_section,
|
1367 |
+
info_section,
|
1368 |
+
],
|
1369 |
+
)
|
1370 |
+
|
1371 |
+
# Auto-load when both video inputs change (triggered by examples)
|
1372 |
+
video1_input.change(
|
1373 |
+
fn=auto_load_when_examples_change,
|
1374 |
+
inputs=[video1_input, video2_input],
|
1375 |
+
outputs=[
|
1376 |
+
status_output,
|
1377 |
+
frame_slider,
|
1378 |
+
frame1_output,
|
1379 |
+
frame2_output,
|
1380 |
+
frame_info,
|
1381 |
+
metrics_plot,
|
1382 |
+
frame_controls,
|
1383 |
+
frame_display,
|
1384 |
+
metrics_section,
|
1385 |
+
info_section,
|
1386 |
+
],
|
1387 |
+
)
|
1388 |
+
|
1389 |
+
video2_input.change(
|
1390 |
+
fn=auto_load_when_examples_change,
|
1391 |
+
inputs=[video1_input, video2_input],
|
1392 |
+
outputs=[
|
1393 |
+
status_output,
|
1394 |
+
frame_slider,
|
1395 |
+
frame1_output,
|
1396 |
+
frame2_output,
|
1397 |
+
frame_info,
|
1398 |
+
metrics_plot,
|
1399 |
+
frame_controls,
|
1400 |
+
frame_display,
|
1401 |
+
metrics_section,
|
1402 |
+
info_section,
|
1403 |
+
],
|
1404 |
+
)
|
1405 |
+
|
1406 |
+
frame_slider.change(
|
1407 |
+
fn=update_frames,
|
1408 |
+
inputs=[frame_slider],
|
1409 |
+
outputs=[frame1_output, frame2_output, frame_info, metrics_plot],
|
1410 |
+
)
|
1411 |
+
|
1412 |
+
# Add comprehensive usage guide
|
1413 |
+
gr.Markdown(f"""
|
1414 |
+
### 💡 Professional Features:
|
1415 |
+
- Upload videos in common formats (MP4, AVI, MOV, etc.) or use URLs
|
1416 |
+
- **6 Quality Metrics**: SSIM, PSNR, MSE, pHash, Color Histogram, Sharpness
|
1417 |
+
- **Comprehensive Visualization**: 6-panel analysis dashboard
|
1418 |
+
- **Real-time Analysis**: Navigate frames with live metric updates
|
1419 |
+
- **Smart Comparisons**: See which video performs better per metric
|
1420 |
+
- **Correlation Analysis**: Understand relationships between metrics
|
1421 |
+
{"- Click examples above for instant analysis!" if example_pairs else ""}
|
1422 |
+
|
1423 |
+
### 📊 Metrics Explained (with Directionality):
|
1424 |
+
- **SSIM** ↑: Structural Similarity (1.0 = identical, 0.0 = completely different)
|
1425 |
+
- **PSNR** ↑: Peak Signal-to-Noise Ratio in dB (higher = better quality)
|
1426 |
+
- **MSE** ↓: Mean Squared Error (lower = more similar)
|
1427 |
+
- **pHash** ↑: Perceptual Hash similarity (1.0 = visually identical)
|
1428 |
+
- **Color Histogram** ↑: Color distribution correlation (1.0 = identical colors)
|
1429 |
+
- **Sharpness** ↑: Laplacian variance (higher = sharper images)
|
1430 |
+
|
1431 |
+
### 🎯 Quality Assessment Scale:
|
1432 |
+
- 🟢 **Excellent**: SSIM ≥ 0.9, PSNR ≥ 40dB, MSE ≤ 50
|
1433 |
+
- 🔵 **Good**: SSIM ≥ 0.8, PSNR ≥ 30dB, MSE ≤ 100
|
1434 |
+
- 🟡 **Fair**: SSIM ≥ 0.6, PSNR ≥ 20dB, MSE ≤ 200
|
1435 |
+
- 🔴 **Poor**: Below fair thresholds
|
1436 |
+
|
1437 |
+
### 🏆 Comparison Indicators:
|
1438 |
+
- **V1/V2 Winner**: Shows which video performs better per metric
|
1439 |
+
- **Significance**: Major (>20%), Moderate (10-20%), Minor (5-10%), Negligible (<5%)
|
1440 |
+
- **Overall Match**: Combined quality assessment across all metrics
|
1441 |
+
- **Arrows**: ↑ = Higher is Better, ↓ = Lower is Better
|
1442 |
+
|
1443 |
+
### 📁 Configuration:
|
1444 |
+
{f"Loaded {len(example_pairs)} example comparisons from data.json" if example_pairs else "No examples found in data.json"}
|
1445 |
+
{f"Available videos: {len(all_videos)} files" if all_videos else ""}
|
1446 |
+
""")
|
1447 |
+
|
1448 |
+
return app
|
1449 |
+
|
1450 |
+
|
1451 |
+
def main():
|
1452 |
+
app = create_app()
|
1453 |
+
app.launch(server_name="0.0.0.0", server_port=7860, share=False, debug=True)
|
1454 |
+
|
1455 |
+
|
1456 |
+
if __name__ == "__main__":
|
1457 |
+
main()
|
data.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"comparisons": [
|
3 |
+
{
|
4 |
+
"videos": [
|
5 |
+
"examples/dog/1.mp4",
|
6 |
+
"examples/dog/2.mp4"
|
7 |
+
]
|
8 |
+
},
|
9 |
+
{
|
10 |
+
"videos": [
|
11 |
+
"examples/dog/2.mp4",
|
12 |
+
"examples/dog/3.mp4"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"videos": [
|
17 |
+
"examples/dog/1.mp4",
|
18 |
+
"examples/dog/3.mp4"
|
19 |
+
]
|
20 |
+
}
|
21 |
+
]
|
22 |
+
}
|
examples/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
pyproject.toml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "framelens"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "Tool for frame-by-frame video or image metric comparison"
|
5 |
+
readme = "README.md"
|
6 |
+
requires-python = ">=3.12"
|
7 |
+
dependencies = [
|
8 |
+
"gradio>=5.38.2",
|
9 |
+
"opencv-python>=4.8.0",
|
10 |
+
"numpy>=1.24.0",
|
11 |
+
"pillow>=10.0.0",
|
12 |
+
"scikit-image>=0.21.0",
|
13 |
+
"plotly>=5.17.0",
|
14 |
+
"imagehash>=4.3.1",
|
15 |
+
"scipy>=1.11.0",
|
16 |
+
]
|
requirements.txt
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==24.1.0
|
2 |
+
annotated-types==0.7.0
|
3 |
+
anyio==4.9.0
|
4 |
+
brotli==1.1.0
|
5 |
+
certifi==2025.7.14
|
6 |
+
charset-normalizer==3.4.2
|
7 |
+
click==8.2.1
|
8 |
+
fastapi==0.116.1
|
9 |
+
ffmpy==0.6.1
|
10 |
+
filelock==3.18.0
|
11 |
+
fsspec==2025.7.0
|
12 |
+
gradio==5.38.2
|
13 |
+
gradio-client==1.11.0
|
14 |
+
groovy==0.1.2
|
15 |
+
h11==0.16.0
|
16 |
+
hf-xet==1.1.5
|
17 |
+
httpcore==1.0.9
|
18 |
+
httpx==0.28.1
|
19 |
+
huggingface-hub==0.34.3
|
20 |
+
idna==3.10
|
21 |
+
imagehash==4.3.2
|
22 |
+
imageio==2.37.0
|
23 |
+
jinja2==3.1.6
|
24 |
+
lazy-loader==0.4
|
25 |
+
markdown-it-py==3.0.0
|
26 |
+
markupsafe==3.0.2
|
27 |
+
mdurl==0.1.2
|
28 |
+
narwhals==2.0.1
|
29 |
+
networkx==3.5
|
30 |
+
numpy==2.3.2
|
31 |
+
opencv-python==4.11.0.86
|
32 |
+
orjson==3.11.1
|
33 |
+
packaging==25.0
|
34 |
+
pandas==2.3.1
|
35 |
+
pillow==11.3.0
|
36 |
+
plotly==6.2.0
|
37 |
+
pydantic==2.11.7
|
38 |
+
pydantic-core==2.33.2
|
39 |
+
pydub==0.25.1
|
40 |
+
pygments==2.19.2
|
41 |
+
python-dateutil==2.9.0.post0
|
42 |
+
python-multipart==0.0.20
|
43 |
+
pytz==2025.2
|
44 |
+
pywavelets==1.8.0
|
45 |
+
pyyaml==6.0.2
|
46 |
+
requests==2.32.4
|
47 |
+
rich==14.1.0
|
48 |
+
ruff==0.12.5
|
49 |
+
safehttpx==0.1.6
|
50 |
+
scikit-image==0.25.2
|
51 |
+
scipy==1.16.1
|
52 |
+
semantic-version==2.10.0
|
53 |
+
shellingham==1.5.4
|
54 |
+
six==1.17.0
|
55 |
+
sniffio==1.3.1
|
56 |
+
starlette==0.47.2
|
57 |
+
tifffile==2025.6.11
|
58 |
+
tomlkit==0.13.3
|
59 |
+
tqdm==4.67.1
|
60 |
+
typer==0.16.0
|
61 |
+
typing-extensions==4.14.1
|
62 |
+
typing-inspection==0.4.1
|
63 |
+
tzdata==2025.2
|
64 |
+
urllib3==2.5.0
|
65 |
+
uvicorn==0.35.0
|
66 |
+
websockets==15.0.1
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|