File size: 74,970 Bytes
0e0fda4
 
 
 
 
 
 
 
a94c604
0e0fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d3e9dc
 
0e0fda4
 
 
9d3e9dc
0e0fda4
 
 
 
 
 
 
 
 
 
9d3e9dc
 
0e0fda4
9d3e9dc
 
0e0fda4
85288ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d3e9dc
85288ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d3e9dc
0e0fda4
 
 
 
9d3e9dc
0e0fda4
85288ef
 
 
 
 
 
9d3e9dc
0e0fda4
 
9d3e9dc
 
 
 
 
 
 
0e0fda4
9d3e9dc
 
 
 
 
 
85288ef
 
 
 
 
 
 
 
 
 
 
9d3e9dc
 
 
 
 
0e0fda4
9d3e9dc
 
0e0fda4
 
 
 
9d3e9dc
 
 
0e0fda4
9d3e9dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85288ef
 
 
 
 
 
 
 
 
 
0e0fda4
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
 
9d3e9dc
 
0e0fda4
 
 
 
9d3e9dc
 
 
0e0fda4
9d3e9dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85288ef
 
 
 
 
 
 
 
0e0fda4
9d3e9dc
0e0fda4
9d3e9dc
 
0e0fda4
9d3e9dc
 
0e0fda4
 
 
 
9d3e9dc
 
 
0e0fda4
9d3e9dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85288ef
 
 
 
 
 
 
 
 
 
0e0fda4
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
 
9d3e9dc
 
0e0fda4
 
 
 
9d3e9dc
 
 
 
 
0e0fda4
 
9d3e9dc
 
 
 
 
 
 
0e0fda4
9d3e9dc
 
 
 
 
 
85288ef
 
 
 
 
 
 
 
 
 
0e0fda4
9d3e9dc
0e0fda4
9d3e9dc
 
 
0e0fda4
9d3e9dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e0fda4
9d3e9dc
 
 
 
 
 
 
 
 
 
 
 
0e0fda4
9d3e9dc
 
 
 
 
 
 
0e0fda4
9d3e9dc
 
 
 
 
 
 
 
 
85288ef
 
 
 
 
 
 
 
 
 
0e0fda4
9d3e9dc
0e0fda4
9d3e9dc
 
0e0fda4
9d3e9dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1181d4
 
 
 
 
 
 
 
 
 
 
 
9d3e9dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85288ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d3e9dc
85288ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d3e9dc
 
 
 
 
 
 
85288ef
 
 
 
9d3e9dc
 
 
85288ef
9d3e9dc
 
0e0fda4
85288ef
 
9d3e9dc
 
 
 
 
 
 
 
 
 
 
 
 
 
85288ef
 
 
 
 
 
 
9d3e9dc
 
85288ef
 
 
 
9d3e9dc
 
0e0fda4
9d3e9dc
0e0fda4
9d3e9dc
 
 
0e0fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1181d4
0e0fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d3e9dc
0e0fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d3e9dc
0e0fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d3e9dc
0e0fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d3e9dc
 
 
0e0fda4
 
 
 
 
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
9d3e9dc
 
 
 
0e0fda4
 
 
 
 
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
9d3e9dc
 
0e0fda4
 
 
 
 
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
9d3e9dc
 
 
 
0e0fda4
 
 
 
 
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
9d3e9dc
 
0e0fda4
 
 
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
 
 
 
 
 
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
 
 
 
 
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
 
9d3e9dc
0e0fda4
 
 
 
 
 
 
9d3e9dc
0e0fda4
 
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
9d3e9dc
 
 
 
 
 
 
 
 
0e0fda4
 
 
9d3e9dc
0e0fda4
 
9d3e9dc
0e0fda4
 
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
 
 
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
 
 
 
9d3e9dc
0e0fda4
9d3e9dc
0e0fda4
 
 
9d3e9dc
0e0fda4
 
 
 
9d3e9dc
0e0fda4
9d3e9dc
85288ef
0e0fda4
9d3e9dc
85288ef
0e0fda4
9d3e9dc
85288ef
0e0fda4
9d3e9dc
85288ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e0fda4
 
 
 
 
 
9d3e9dc
0e0fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85288ef
 
 
 
 
 
 
 
 
 
 
 
 
0e0fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85288ef
 
 
0e0fda4
 
9d3e9dc
0e0fda4
4c4e905
85288ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e0fda4
 
9d3e9dc
0e0fda4
85288ef
 
9d3e9dc
 
 
 
 
0e0fda4
9d3e9dc
0e0fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85288ef
0e0fda4
 
a1181d4
0e0fda4
 
 
 
85288ef
0e0fda4
 
 
 
 
9fbfec1
0e0fda4
 
 
 
a94c604
 
 
 
 
 
 
f837f3d
a94c604
 
 
 
 
0e0fda4
 
 
 
 
a94c604
 
 
 
0e0fda4
 
 
9fbfec1
0e0fda4
 
 
 
 
 
 
85288ef
0e0fda4
 
 
9fbfec1
0e0fda4
 
85288ef
9d3e9dc
 
 
 
 
 
 
 
85288ef
 
 
 
 
 
 
 
a1181d4
 
 
 
 
85288ef
 
 
 
 
 
 
a94c604
a1181d4
 
 
 
 
85288ef
a1181d4
 
 
85288ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1181d4
 
 
85288ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1181d4
 
 
 
 
 
 
 
 
 
 
 
 
 
85288ef
 
 
 
 
 
 
 
 
0e0fda4
 
 
85288ef
 
 
9d3e9dc
0e0fda4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d3e9dc
 
 
 
 
 
 
 
 
0e0fda4
 
 
 
a94c604
0e0fda4
 
9d3e9dc
 
 
 
 
 
 
0e0fda4
 
85288ef
0e0fda4
 
 
 
 
9d3e9dc
a94c604
9d3e9dc
 
 
 
 
 
 
 
 
a94c604
9d3e9dc
0e0fda4
 
 
9d3e9dc
0e0fda4
9d3e9dc
 
 
 
 
 
 
 
 
 
 
a94c604
9d3e9dc
 
 
 
 
 
 
 
 
 
0e0fda4
 
 
85288ef
 
 
0e0fda4
 
85288ef
0e0fda4
 
85288ef
0e0fda4
 
 
 
 
 
a94c604
0e0fda4
85288ef
9d3e9dc
 
 
 
 
 
 
9fbfec1
 
 
 
0e0fda4
 
a1181d4
 
 
85288ef
 
a1181d4
 
 
 
 
 
 
 
 
a94c604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1181d4
 
 
 
 
85288ef
 
 
 
 
0e0fda4
 
 
 
 
a94c604
0e0fda4
 
9d3e9dc
 
 
 
 
 
 
0e0fda4
 
 
 
 
 
 
85288ef
 
0e0fda4
 
 
 
 
a94c604
0e0fda4
 
9d3e9dc
 
 
 
 
 
 
0e0fda4
 
 
 
 
 
 
85288ef
 
 
 
 
 
 
0e0fda4
 
 
 
 
a94c604
0e0fda4
 
9d3e9dc
 
 
 
 
 
 
0e0fda4
 
 
 
 
 
 
 
 
 
9d3e9dc
 
a94c604
9d3e9dc
 
 
 
 
 
 
 
 
 
0e0fda4
 
 
 
 
 
 
85288ef
 
 
 
 
0e0fda4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
import json
import os

import cv2
import gradio as gr
import imagehash
import numpy as np
import plotly.graph_objects as go
from gradio_imageslider import ImageSlider
from PIL import Image
from scipy.stats import pearsonr
from skimage.metrics import mean_squared_error as mse_skimage
from skimage.metrics import peak_signal_noise_ratio as psnr_skimage
from skimage.metrics import structural_similarity as ssim


class FrameMetrics:
    """Class to compute and store frame-by-frame metrics"""

    def __init__(self):
        self.metrics = {}

    def compute_ssim(self, frame1, frame2):
        """Compute SSIM between two frames"""
        if frame1 is None or frame2 is None:
            return None

        try:
            # Convert to grayscale for SSIM computation
            gray1 = (
                cv2.cvtColor(frame1, cv2.COLOR_RGB2GRAY)
                if len(frame1.shape) == 3
                else frame1
            )
            gray2 = (
                cv2.cvtColor(frame2, cv2.COLOR_RGB2GRAY)
                if len(frame2.shape) == 3
                else frame2
            )

            # Ensure both frames have the same dimensions
            if gray1.shape != gray2.shape:
                # Resize to match the smaller dimension
                h = min(gray1.shape[0], gray2.shape[0])
                w = min(gray1.shape[1], gray2.shape[1])
                gray1 = cv2.resize(gray1, (w, h))
                gray2 = cv2.resize(gray2, (w, h))

            # Compute SSIM
            ssim_value = ssim(gray1, gray2, data_range=255)
            return ssim_value

        except Exception as e:
            print(f"SSIM computation failed: {e}")
            return None

    def compute_ms_ssim(self, frame1, frame2):
        """Compute Multi-Scale SSIM between two frames"""
        if frame1 is None or frame2 is None:
            return None

        try:
            # Convert to grayscale for MS-SSIM computation
            gray1 = (
                cv2.cvtColor(frame1, cv2.COLOR_RGB2GRAY)
                if len(frame1.shape) == 3
                else frame1
            )
            gray2 = (
                cv2.cvtColor(frame2, cv2.COLOR_RGB2GRAY)
                if len(frame2.shape) == 3
                else frame2
            )

            # Ensure both frames have the same dimensions
            if gray1.shape != gray2.shape:
                h = min(gray1.shape[0], gray2.shape[0])
                w = min(gray1.shape[1], gray2.shape[1])
                gray1 = cv2.resize(gray1, (w, h))
                gray2 = cv2.resize(gray2, (w, h))

            # Ensure minimum size for multi-scale analysis
            min_size = 32
            if min(gray1.shape) < min_size:
                return None

            # Compute MS-SSIM using multiple scales
            from skimage.metrics import structural_similarity

            # Use win_size that works with image dimensions
            win_size = min(7, min(gray1.shape) // 4)
            if win_size < 3:
                win_size = 3

            ms_ssim_val = structural_similarity(
                gray1, gray2, data_range=255, win_size=win_size, multichannel=False
            )

            return ms_ssim_val

        except Exception as e:
            print(f"MS-SSIM computation failed: {e}")
            return None

    def compute_psnr(self, frame1, frame2):
        """Compute PSNR between two frames"""
        if frame1 is None or frame2 is None:
            return None

        try:
            # Ensure both frames have the same dimensions
            if frame1.shape != frame2.shape:
                h = min(frame1.shape[0], frame2.shape[0])
                w = min(frame1.shape[1], frame2.shape[1])
                c = (
                    min(frame1.shape[2], frame2.shape[2])
                    if len(frame1.shape) == 3
                    else 1
                )

                if len(frame1.shape) == 3:
                    frame1 = cv2.resize(frame1, (w, h))[:, :, :c]
                    frame2 = cv2.resize(frame2, (w, h))[:, :, :c]
                else:
                    frame1 = cv2.resize(frame1, (w, h))
                    frame2 = cv2.resize(frame2, (w, h))

            # Compute PSNR
            return psnr_skimage(frame1, frame2, data_range=255)
        except Exception as e:
            print(f"PSNR computation failed: {e}")
            return None

    def compute_mse(self, frame1, frame2):
        """Compute MSE between two frames"""
        if frame1 is None or frame2 is None:
            return None

        try:
            # Ensure both frames have the same dimensions
            if frame1.shape != frame2.shape:
                h = min(frame1.shape[0], frame2.shape[0])
                w = min(frame1.shape[1], frame2.shape[1])
                c = (
                    min(frame1.shape[2], frame2.shape[2])
                    if len(frame1.shape) == 3
                    else 1
                )

                if len(frame1.shape) == 3:
                    frame1 = cv2.resize(frame1, (w, h))[:, :, :c]
                    frame2 = cv2.resize(frame2, (w, h))[:, :, :c]
                else:
                    frame1 = cv2.resize(frame1, (w, h))
                    frame2 = cv2.resize(frame2, (w, h))

            # Compute MSE
            return mse_skimage(frame1, frame2)
        except Exception as e:
            print(f"MSE computation failed: {e}")
            return None

    def compute_phash(self, frame1, frame2):
        """Compute perceptual hash similarity between two frames"""
        if frame1 is None or frame2 is None:
            return None

        try:
            # Convert to PIL Images for imagehash
            pil1 = Image.fromarray(frame1)
            pil2 = Image.fromarray(frame2)

            # Compute perceptual hashes
            hash1 = imagehash.phash(pil1)
            hash2 = imagehash.phash(pil2)

            # Calculate similarity (lower hamming distance = more similar)
            hamming_distance = hash1 - hash2
            # Convert to similarity score (0-1, where 1 is identical)
            max_distance = len(str(hash1)) * 4  # 4 bits per hex char
            similarity = 1 - (hamming_distance / max_distance)

            return similarity
        except Exception as e:
            print(f"pHash computation failed: {e}")
            return None

    def compute_color_histogram_correlation(self, frame1, frame2):
        """Compute color histogram correlation between two frames"""
        if frame1 is None or frame2 is None:
            return None

        try:
            # Ensure both frames have the same dimensions
            if frame1.shape != frame2.shape:
                h = min(frame1.shape[0], frame2.shape[0])
                w = min(frame1.shape[1], frame2.shape[1])
                frame1 = cv2.resize(frame1, (w, h))
                frame2 = cv2.resize(frame2, (w, h))

            # Compute histograms for each channel
            correlations = []

            if len(frame1.shape) == 3:  # Color image
                for i in range(3):  # R, G, B channels
                    hist1 = cv2.calcHist([frame1], [i], None, [256], [0, 256])
                    hist2 = cv2.calcHist([frame2], [i], None, [256], [0, 256])

                    # Flatten histograms
                    hist1 = hist1.flatten()
                    hist2 = hist2.flatten()

                    # Compute correlation
                    if np.std(hist1) > 0 and np.std(hist2) > 0:
                        corr, _ = pearsonr(hist1, hist2)
                        correlations.append(corr)

                # Return average correlation across channels
                return np.mean(correlations) if correlations else 0.0
            else:  # Grayscale
                hist1 = cv2.calcHist([frame1], [0], None, [256], [0, 256]).flatten()
                hist2 = cv2.calcHist([frame2], [0], None, [256], [0, 256]).flatten()

                if np.std(hist1) > 0 and np.std(hist2) > 0:
                    corr, _ = pearsonr(hist1, hist2)
                    return corr
                else:
                    return 0.0

        except Exception as e:
            print(f"Color histogram correlation computation failed: {e}")
            return None

    def compute_sharpness(self, frame):
        """Compute sharpness using Laplacian variance method"""
        if frame is None:
            return None

        # Convert to grayscale if needed
        gray = (
            cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) if len(frame.shape) == 3 else frame
        )

        # Compute Laplacian variance (higher values = sharper)
        laplacian = cv2.Laplacian(gray, cv2.CV_64F)
        sharpness = laplacian.var()

        return sharpness

    def compute_frame_metrics(self, frame1, frame2, frame_idx):
        """Compute all metrics for a frame pair"""
        metrics = {
            "frame_index": frame_idx,
            "ssim": self.compute_ssim(frame1, frame2),
            "psnr": self.compute_psnr(frame1, frame2),
            "mse": self.compute_mse(frame1, frame2),
            "phash": self.compute_phash(frame1, frame2),
            "color_hist_corr": self.compute_color_histogram_correlation(frame1, frame2),
            "sharpness1": self.compute_sharpness(frame1),
            "sharpness2": self.compute_sharpness(frame2),
        }

        # Compute average sharpness for the pair
        if metrics["sharpness1"] is not None and metrics["sharpness2"] is not None:
            metrics["sharpness_avg"] = (
                metrics["sharpness1"] + metrics["sharpness2"]
            ) / 2
            metrics["sharpness_diff"] = abs(
                metrics["sharpness1"] - metrics["sharpness2"]
            )
        else:
            metrics["sharpness_avg"] = None
            metrics["sharpness_diff"] = None

        return metrics

    def compute_all_metrics(self, frames1, frames2):
        """Compute metrics for all frame pairs"""
        all_metrics = []
        max_frames = max(len(frames1), len(frames2))

        for i in range(max_frames):
            frame1 = frames1[i] if i < len(frames1) else None
            frame2 = frames2[i] if i < len(frames2) else None

            if frame1 is not None or frame2 is not None:
                metrics = self.compute_frame_metrics(frame1, frame2, i)
                all_metrics.append(metrics)
            else:
                # Handle cases where both frames are missing
                all_metrics.append(
                    {
                        "frame_index": i,
                        "ssim": None,
                        "ms_ssim": None,
                        "psnr": None,
                        "mse": None,
                        "phash": None,
                        "color_hist_corr": None,
                        "sharpness1": None,
                        "sharpness2": None,
                        "sharpness_avg": None,
                        "sharpness_diff": None,
                    }
                )

        return all_metrics

    def get_metric_summary(self, metrics_list):
        """Compute summary statistics for all metrics"""
        metric_names = [
            "ssim",
            "psnr",
            "mse",
            "phash",
            "color_hist_corr",
            "sharpness1",
            "sharpness2",
            "sharpness_avg",
            "sharpness_diff",
        ]

        summary = {
            "total_frames": len(metrics_list),
            "valid_frames": len([m for m in metrics_list if m.get("ssim") is not None]),
        }

        # Compute statistics for each metric
        for metric_name in metric_names:
            valid_values = [
                m[metric_name] for m in metrics_list if m.get(metric_name) is not None
            ]

            if valid_values:
                summary.update(
                    {
                        f"{metric_name}_mean": np.mean(valid_values),
                        f"{metric_name}_min": np.min(valid_values),
                        f"{metric_name}_max": np.max(valid_values),
                        f"{metric_name}_std": np.std(valid_values),
                    }
                )

        return summary

    def create_individual_metric_plots(self, metrics_list, current_frame=0):
        """Create individual plots for each metric with frame on x-axis"""
        if not metrics_list:
            return None

        # Extract frame indices
        frame_indices = [m["frame_index"] for m in metrics_list]

        # Helper function to get valid data
        def get_valid_data(metric_name):
            values = [m.get(metric_name) for m in metrics_list]
            valid_indices = [i for i, v in enumerate(values) if v is not None]
            valid_values = [values[i] for i in valid_indices]
            valid_frames = [frame_indices[i] for i in valid_indices]
            return valid_frames, valid_values

        # Create individual plots for each metric
        plots = {}

        # 1. SSIM Plot
        ssim_frames, ssim_values = get_valid_data("ssim")
        if ssim_values:
            # Calculate dynamic y-axis range for SSIM to highlight differences
            min_ssim = min(ssim_values)
            max_ssim = max(ssim_values)
            ssim_range = max_ssim - min_ssim

            # If there's very little variation, zoom in to show differences
            if ssim_range < 0.05:
                # For small variations, zoom in to show differences better
                center = (min_ssim + max_ssim) / 2
                padding = max(
                    0.02, ssim_range * 2
                )  # At least 0.02 range or 2x actual range
                y_min = max(0, center - padding)
                y_max = min(1, center + padding)
            else:
                # For larger variations, add some padding
                padding = ssim_range * 0.15  # 15% padding
                y_min = max(0, min_ssim - padding)
                y_max = min(1, max_ssim + padding)

            fig_ssim = go.Figure()

            # Add area fill to emphasize the curve
            fig_ssim.add_trace(
                go.Scatter(
                    x=ssim_frames,
                    y=[y_min] * len(ssim_frames),
                    mode="lines",
                    line=dict(
                        color="rgba(0,0,255,0)"
                    ),  # Transparent line for area base
                    showlegend=False,
                    hoverinfo="skip",
                )
            )

            fig_ssim.add_trace(
                go.Scatter(
                    x=ssim_frames,
                    y=ssim_values,
                    mode="lines+markers",
                    name="SSIM",
                    line=dict(color="blue", width=3),
                    marker=dict(
                        size=6, color="blue", line=dict(color="darkblue", width=1)
                    ),
                    hovertemplate="<b>Frame %{x}</b><br>SSIM: %{y:.5f}<extra></extra>",
                    fill="tonexty",
                    fillcolor="rgba(0,0,255,0.1)",  # Light blue fill
                )
            )

            if current_frame is not None:
                fig_ssim.add_vline(
                    x=current_frame,
                    line_dash="dash",
                    line_color="red",
                    line_width=2,
                )

            fig_ssim.update_layout(
                height=300,
                margin=dict(t=20, b=40, l=60, r=20),
                plot_bgcolor="rgba(0,0,0,0)",
                paper_bgcolor="rgba(0,0,0,0)",
                showlegend=False,
                dragmode=False,
                hovermode="x unified",
            )
            fig_ssim.update_xaxes(
                title_text="Frame", gridcolor="rgba(128,128,128,0.4)", fixedrange=True
            )
            fig_ssim.update_yaxes(
                title_text="SSIM",
                range=[y_min, y_max],
                gridcolor="rgba(128,128,128,0.4)",
                fixedrange=True,
            )
            plots["ssim"] = fig_ssim

        # 2. PSNR Plot
        psnr_frames, psnr_values = get_valid_data("psnr")
        if psnr_values:
            fig_psnr = go.Figure()
            fig_psnr.add_trace(
                go.Scatter(
                    x=psnr_frames,
                    y=psnr_values,
                    mode="lines+markers",
                    name="PSNR",
                    line=dict(color="green", width=3),
                    marker=dict(size=6),
                    hovertemplate="<b>Frame %{x}</b><br>PSNR: %{y:.2f} dB<extra></extra>",
                )
            )

            if current_frame is not None:
                fig_psnr.add_vline(
                    x=current_frame,
                    line_dash="dash",
                    line_color="red",
                    line_width=2,
                )

            fig_psnr.update_layout(
                height=300,
                margin=dict(t=20, b=40, l=60, r=20),
                plot_bgcolor="rgba(0,0,0,0)",
                paper_bgcolor="rgba(0,0,0,0)",
                showlegend=False,
                dragmode=False,
                hovermode="x unified",
            )
            fig_psnr.update_xaxes(
                title_text="Frame", gridcolor="rgba(128,128,128,0.4)", fixedrange=True
            )
            fig_psnr.update_yaxes(
                title_text="PSNR (dB)",
                gridcolor="rgba(128,128,128,0.4)",
                fixedrange=True,
            )
            plots["psnr"] = fig_psnr

        # 3. MSE Plot
        mse_frames, mse_values = get_valid_data("mse")
        if mse_values:
            fig_mse = go.Figure()
            fig_mse.add_trace(
                go.Scatter(
                    x=mse_frames,
                    y=mse_values,
                    mode="lines+markers",
                    name="MSE",
                    line=dict(color="red", width=3),
                    marker=dict(size=6),
                    hovertemplate="<b>Frame %{x}</b><br>MSE: %{y:.2f}<extra></extra>",
                )
            )

            if current_frame is not None:
                fig_mse.add_vline(
                    x=current_frame,
                    line_dash="dash",
                    line_color="red",
                    line_width=2,
                )

            fig_mse.update_layout(
                height=300,
                margin=dict(t=20, b=40, l=60, r=20),
                plot_bgcolor="rgba(0,0,0,0)",
                paper_bgcolor="rgba(0,0,0,0)",
                showlegend=False,
                dragmode=False,
                hovermode="x unified",
            )
            fig_mse.update_xaxes(
                title_text="Frame", gridcolor="rgba(128,128,128,0.4)", fixedrange=True
            )
            fig_mse.update_yaxes(
                title_text="MSE", gridcolor="rgba(128,128,128,0.4)", fixedrange=True
            )
            plots["mse"] = fig_mse

        # 4. pHash Plot
        phash_frames, phash_values = get_valid_data("phash")
        if phash_values:
            fig_phash = go.Figure()
            fig_phash.add_trace(
                go.Scatter(
                    x=phash_frames,
                    y=phash_values,
                    mode="lines+markers",
                    name="pHash",
                    line=dict(color="purple", width=3),
                    marker=dict(size=6),
                    hovertemplate="<b>Frame %{x}</b><br>pHash: %{y:.4f}<extra></extra>",
                )
            )

            if current_frame is not None:
                fig_phash.add_vline(
                    x=current_frame,
                    line_dash="dash",
                    line_color="red",
                    line_width=2,
                )

            fig_phash.update_layout(
                height=300,
                margin=dict(t=20, b=40, l=60, r=20),
                plot_bgcolor="rgba(0,0,0,0)",
                paper_bgcolor="rgba(0,0,0,0)",
                showlegend=False,
                dragmode=False,
                hovermode="x unified",
            )
            fig_phash.update_xaxes(
                title_text="Frame", gridcolor="rgba(128,128,128,0.4)", fixedrange=True
            )
            fig_phash.update_yaxes(
                title_text="pHash Similarity",
                gridcolor="rgba(128,128,128,0.4)",
                fixedrange=True,
            )
            plots["phash"] = fig_phash

        # 5. Color Histogram Correlation Plot
        hist_frames, hist_values = get_valid_data("color_hist_corr")
        if hist_values:
            fig_hist = go.Figure()
            fig_hist.add_trace(
                go.Scatter(
                    x=hist_frames,
                    y=hist_values,
                    mode="lines+markers",
                    name="Color Histogram",
                    line=dict(color="orange", width=3),
                    marker=dict(size=6),
                    hovertemplate="<b>Frame %{x}</b><br>Color Histogram: %{y:.4f}<extra></extra>",
                )
            )

            if current_frame is not None:
                fig_hist.add_vline(
                    x=current_frame,
                    line_dash="dash",
                    line_color="red",
                    line_width=2,
                )

            fig_hist.update_layout(
                height=300,
                margin=dict(t=20, b=40, l=60, r=20),
                plot_bgcolor="rgba(0,0,0,0)",
                paper_bgcolor="rgba(0,0,0,0)",
                showlegend=False,
                dragmode=False,
                hovermode="x unified",
            )
            fig_hist.update_xaxes(
                title_text="Frame", gridcolor="rgba(128,128,128,0.4)", fixedrange=True
            )
            fig_hist.update_yaxes(
                title_text="Color Histogram Correlation",
                gridcolor="rgba(128,128,128,0.4)",
                fixedrange=True,
            )
            plots["color_hist"] = fig_hist

        # 6. Sharpness Comparison Plot
        sharp1_frames, sharp1_values = get_valid_data("sharpness1")
        sharp2_frames, sharp2_values = get_valid_data("sharpness2")

        if sharp1_values or sharp2_values:
            fig_sharp = go.Figure()

            if sharp1_values:
                fig_sharp.add_trace(
                    go.Scatter(
                        x=sharp1_frames,
                        y=sharp1_values,
                        mode="lines+markers",
                        name="Video 1",
                        line=dict(color="darkgreen", width=3),
                        marker=dict(size=6),
                        hovertemplate="<b>Frame %{x}</b><br>Video 1 Sharpness: %{y:.1f}<extra></extra>",
                    )
                )

            if sharp2_values:
                fig_sharp.add_trace(
                    go.Scatter(
                        x=sharp2_frames,
                        y=sharp2_values,
                        mode="lines+markers",
                        name="Video 2",
                        line=dict(color="darkblue", width=3),
                        marker=dict(size=6),
                        hovertemplate="<b>Frame %{x}</b><br>Video 2 Sharpness: %{y:.1f}<extra></extra>",
                    )
                )

            if current_frame is not None:
                fig_sharp.add_vline(
                    x=current_frame,
                    line_dash="dash",
                    line_color="red",
                    line_width=2,
                )

            fig_sharp.update_layout(
                height=300,
                margin=dict(t=20, b=40, l=60, r=20),
                plot_bgcolor="rgba(0,0,0,0)",
                paper_bgcolor="rgba(0,0,0,0)",
                showlegend=True,
                legend=dict(
                    orientation="h", yanchor="bottom", y=1.02, xanchor="center", x=0.5
                ),
                dragmode=False,
                hovermode="x unified",
            )
            fig_sharp.update_xaxes(
                title_text="Frame", gridcolor="rgba(128,128,128,0.4)", fixedrange=True
            )
            fig_sharp.update_yaxes(
                title_text="Sharpness",
                gridcolor="rgba(128,128,128,0.4)",
                fixedrange=True,
            )
            plots["sharpness"] = fig_sharp

        # 7. Overall Quality Score Plot (Combination of metrics)
        # Calculate overall quality score by combining normalized metrics
        if ssim_values and psnr_values and len(ssim_values) == len(psnr_values):
            # Get data for metrics that contribute to overall score
            phash_frames_overall, phash_values_overall = get_valid_data("phash")

            # Ensure we have the same frames for all metrics
            common_frames = set(ssim_frames) & set(psnr_frames)
            if phash_values_overall:
                common_frames = common_frames & set(phash_frames_overall)

            common_frames = sorted(list(common_frames))

            if common_frames:
                # Extract values for common frames
                ssim_common = [
                    ssim_values[ssim_frames.index(f)]
                    for f in common_frames
                    if f in ssim_frames
                ]
                psnr_common = [
                    psnr_values[psnr_frames.index(f)]
                    for f in common_frames
                    if f in psnr_frames
                ]

                # Normalize PSNR to 0-1 scale using min-max normalization
                if psnr_common:
                    psnr_min = min(psnr_common)
                    psnr_max = max(psnr_common)
                    if psnr_max > psnr_min:
                        psnr_normalized = [
                            (p - psnr_min) / (psnr_max - psnr_min) for p in psnr_common
                        ]
                    else:
                        psnr_normalized = [0.0 for _ in psnr_common]
                else:
                    psnr_normalized = []

                # Start with SSIM and normalized PSNR
                quality_components = [ssim_common, psnr_normalized]
                component_names = ["SSIM", "PSNR"]

                # Add pHash if available
                if phash_values_overall:
                    phash_common = [
                        phash_values_overall[phash_frames_overall.index(f)]
                        for f in common_frames
                        if f in phash_frames_overall
                    ]
                    if len(phash_common) == len(ssim_common):
                        quality_components.append(phash_common)
                        component_names.append("pHash")

                # Calculate average across all components
                overall_quality = []
                for i in range(len(common_frames)):
                    frame_scores = [
                        component[i]
                        for component in quality_components
                        if i < len(component)
                    ]
                    overall_quality.append(sum(frame_scores) / len(frame_scores))

                # Calculate dynamic y-axis range to emphasize differences
                min_quality = min(overall_quality)
                max_quality = max(overall_quality)
                quality_range = max_quality - min_quality

                # If there's very little variation, use a smaller range to emphasize small differences
                if quality_range < 0.08:
                    # For small variations, zoom in to show differences better
                    center = (min_quality + max_quality) / 2
                    padding = max(
                        0.04, quality_range * 2
                    )  # At least 0.04 range or 2x the actual range
                    y_min = max(0, center - padding)
                    y_max = min(1, center + padding)
                else:
                    # For larger variations, add some padding
                    padding = quality_range * 0.15  # 15% padding
                    y_min = max(0, min_quality - padding)
                    y_max = min(1, max_quality + padding)

                fig_overall = go.Figure()

                # Add area fill to emphasize the quality curve
                fig_overall.add_trace(
                    go.Scatter(
                        x=common_frames,
                        y=[y_min] * len(common_frames),
                        mode="lines",
                        line=dict(
                            color="rgba(255,215,0,0)"
                        ),  # Transparent line for area base
                        showlegend=False,
                        hoverinfo="skip",
                    )
                )

                fig_overall.add_trace(
                    go.Scatter(
                        x=common_frames,
                        y=overall_quality,
                        mode="lines+markers",
                        name="Overall Quality",
                        line=dict(color="gold", width=4),
                        marker=dict(
                            size=8, color="gold", line=dict(color="orange", width=2)
                        ),
                        hovertemplate="<b>Frame %{x}</b><br>Overall Quality: %{y:.5f}<br><i>Combined from: "
                        + ", ".join(component_names)
                        + "</i><extra></extra>",
                        fill="tonexty",
                        fillcolor="rgba(255,215,0,0.15)",  # Semi-transparent gold fill
                    )
                )

                # Add quality threshold indicators if there are significant variations

                if current_frame is not None:
                    fig_overall.add_vline(
                        x=current_frame,
                        line_dash="dash",
                        line_color="red",
                        line_width=2,
                    )

                fig_overall.update_layout(
                    height=300,
                    margin=dict(t=20, b=40, l=60, r=20),
                    plot_bgcolor="rgba(0,0,0,0)",
                    paper_bgcolor="rgba(0,0,0,0)",
                    showlegend=False,
                    dragmode=False,
                    hovermode="x unified",
                )
                fig_overall.update_xaxes(
                    title_text="Frame",
                    gridcolor="rgba(128,128,128,0.4)",
                    fixedrange=True,
                )
                fig_overall.update_yaxes(
                    title_text="Overall Quality Score",
                    range=[y_min, y_max],
                    gridcolor="rgba(128,128,128,0.4)",
                    fixedrange=True,
                )
                plots["overall"] = fig_overall

        return plots

    def create_modern_plot(self, metrics_list, current_frame=0):
        """Create individual metric plots instead of combined dashboard"""
        return self.create_individual_metric_plots(metrics_list, current_frame)


class VideoFrameComparator:
    def __init__(self):
        self.video1_frames = []
        self.video2_frames = []
        self.max_frames = 0
        self.frame_metrics = FrameMetrics()
        self.computed_metrics = []
        self.metrics_summary = {}

    def extract_frames(self, video_path):
        """Extract all frames from a video file or URL"""
        if not video_path:
            return []

        # Check if it's a URL or local file
        is_url = video_path.startswith(("http://", "https://"))

        if not is_url and not os.path.exists(video_path):
            print(f"Warning: Local video file not found: {video_path}")
            return []

        frames = []
        cap = cv2.VideoCapture(video_path)

        if not cap.isOpened():
            print(
                f"Error: Could not open video {'URL' if is_url else 'file'}: {video_path}"
            )
            return []

        try:
            frame_count = 0
            while True:
                ret, frame = cap.read()
                if not ret:
                    break
                # Convert BGR to RGB for display
                frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                frames.append(frame_rgb)
                frame_count += 1

                # Add progress feedback for URLs (which might be slower)
                if is_url and frame_count % 30 == 0:
                    print(f"Processed {frame_count} frames from URL...")

        except Exception as e:
            print(f"Error processing video: {e}")
        finally:
            cap.release()

        print(
            f"Successfully extracted {len(frames)} frames from {'URL' if is_url else 'file'}: {video_path}"
        )
        return frames

    def is_comparison_in_data_json(
        self, video1_path, video2_path, json_file_path="data.json"
    ):
        """Check if this video comparison exists in data.json"""
        try:
            with open(json_file_path, "r") as f:
                data = json.load(f)

            for comparison in data.get("comparisons", []):
                videos = comparison.get("videos", [])
                if len(videos) == 2:
                    # Check both orders (works for both local files and URLs)
                    if (videos[0] == video1_path and videos[1] == video2_path) or (
                        videos[0] == video2_path and videos[1] == video1_path
                    ):
                        return True

            return False
        except Exception:
            return False

    def load_videos(self, video1_path, video2_path):
        """Load both videos and extract frames"""
        if not video1_path and not video2_path:
            return "Please upload at least one video.", 0, None, None, "", None

        # Extract frames from both videos
        self.video1_frames = self.extract_frames(video1_path) if video1_path else []
        self.video2_frames = self.extract_frames(video2_path) if video2_path else []

        # Determine maximum number of frames
        self.max_frames = max(len(self.video1_frames), len(self.video2_frames))

        if self.max_frames == 0:
            return (
                "No valid frames found in the uploaded videos.",
                0,
                None,
                None,
                "",
                None,
            )

        # Compute metrics if both videos are present and not in data.json
        metrics_info = ""
        plots = None

        if (
            video1_path
            and video2_path
            and not self.is_comparison_in_data_json(video1_path, video2_path)
        ):
            print("Computing comprehensive frame-by-frame metrics...")
            self.computed_metrics = self.frame_metrics.compute_all_metrics(
                self.video1_frames, self.video2_frames
            )
            self.metrics_summary = self.frame_metrics.get_metric_summary(
                self.computed_metrics
            )

            # Build metrics info string
            metrics_info = "\n\nπŸ“Š Computed Metrics Summary:\n"

            metric_display = {
                "ssim": ("SSIM", ".4f", "", "↑ Higher=Better"),
                "psnr": ("PSNR", ".2f", " dB", "↑ Higher=Better"),
                "mse": ("MSE", ".2f", "", "↓ Lower=Better"),
                "phash": ("pHash", ".4f", "", "↑ Higher=Better"),
                "color_hist_corr": ("Color Hist", ".4f", "", "↑ Higher=Better"),
                "sharpness_avg": ("Sharpness", ".1f", "", "↑ Higher=Better"),
            }

            for metric_key, (
                display_name,
                format_str,
                unit,
                direction,
            ) in metric_display.items():
                if self.metrics_summary.get(f"{metric_key}_mean") is not None:
                    mean_val = self.metrics_summary[f"{metric_key}_mean"]
                    std_val = self.metrics_summary[f"{metric_key}_std"]
                    metrics_info += f"{display_name}: ΞΌ={mean_val:{format_str}}{unit}, Οƒ={std_val:{format_str}}{unit} ({direction})\n"

            metrics_info += f"Valid Frames: {self.metrics_summary['valid_frames']}/{self.metrics_summary['total_frames']}"

            # Generate initial plot
            plots = self.frame_metrics.create_individual_metric_plots(
                self.computed_metrics, 0
            )
        else:
            self.computed_metrics = []
            self.metrics_summary = {}
            if video1_path and video2_path:
                metrics_info = "\n\nπŸ“‹ Note: This comparison is predefined in data.json (metrics not computed)"

        # Get initial frames
        frame1 = (
            self.video1_frames[0]
            if self.video1_frames
            else np.zeros((480, 640, 3), dtype=np.uint8)
        )
        frame2 = (
            self.video2_frames[0]
            if self.video2_frames
            else np.zeros((480, 640, 3), dtype=np.uint8)
        )

        status_msg = "Videos loaded successfully!\n"
        status_msg += f"Video 1: {len(self.video1_frames)} frames\n"
        status_msg += f"Video 2: {len(self.video2_frames)} frames\n"
        status_msg += (
            f"Use the slider to navigate through frames (0-{self.max_frames - 1})"
        )
        status_msg += metrics_info

        return (
            status_msg,
            self.max_frames - 1,
            frame1,
            frame2,
            self.get_current_frame_info(0),
            plots,
        )

    def get_frames_at_index(self, frame_index):
        """Get frames at specific index from both videos"""
        frame_index = int(frame_index)

        # Get frame from video 1
        if frame_index < len(self.video1_frames):
            frame1 = self.video1_frames[frame_index]
        else:
            # Create a placeholder if frame doesn't exist
            frame1 = np.zeros((480, 640, 3), dtype=np.uint8)
            cv2.putText(
                frame1,
                f"Frame {frame_index} not available",
                (50, 240),
                cv2.FONT_HERSHEY_SIMPLEX,
                1,
                (255, 255, 255),
                2,
            )

        # Get frame from video 2
        if frame_index < len(self.video2_frames):
            frame2 = self.video2_frames[frame_index]
        else:
            # Create a placeholder if frame doesn't exist
            frame2 = np.zeros((480, 640, 3), dtype=np.uint8)
            cv2.putText(
                frame2,
                f"Frame {frame_index} not available",
                (50, 240),
                cv2.FONT_HERSHEY_SIMPLEX,
                1,
                (255, 255, 255),
                2,
            )

        return frame1, frame2

    def get_current_frame_info(self, frame_index):
        """Get information about the current frame including metrics"""
        frame_index = int(frame_index)
        info = f"Current Frame: {frame_index} / {self.max_frames - 1}"

        # Add metrics info if available
        if self.computed_metrics and frame_index < len(self.computed_metrics):
            metrics = self.computed_metrics[frame_index]

            # === COMPARISON METRICS (Between Videos) ===
            comparison_metrics = []

            # SSIM with quality assessment
            if metrics.get("ssim") is not None:
                ssim_val = metrics["ssim"]
                if ssim_val >= 0.9:
                    quality = "🟒 Excellent"
                elif ssim_val >= 0.8:
                    quality = "πŸ”΅ Good"
                elif ssim_val >= 0.6:
                    quality = "🟑 Fair"
                else:
                    quality = "πŸ”΄ Poor"
                comparison_metrics.append(
                    f"SSIM: {ssim_val:.4f} ({quality} similarity)"
                )

            # PSNR with quality indicator
            if metrics.get("psnr") is not None:
                psnr_val = metrics["psnr"]
                if psnr_val >= 40:
                    psnr_quality = "🟒 Excellent"
                elif psnr_val >= 30:
                    psnr_quality = "πŸ”΅ Good"
                elif psnr_val >= 20:
                    psnr_quality = "🟑 Fair"
                else:
                    psnr_quality = "πŸ”΄ Poor"
                comparison_metrics.append(
                    f"PSNR: {psnr_val:.1f}dB ({psnr_quality} signal quality)"
                )

            # MSE with quality indicator (lower is better)
            if metrics.get("mse") is not None:
                mse_val = metrics["mse"]
                if mse_val <= 50:
                    mse_quality = "🟒 Very Similar"
                elif mse_val <= 100:
                    mse_quality = "πŸ”΅ Similar"
                elif mse_val <= 200:
                    mse_quality = "🟑 Moderately Different"
                else:
                    mse_quality = "πŸ”΄ Very Different"
                comparison_metrics.append(f"MSE: {mse_val:.1f} ({mse_quality})")

            # pHash with quality indicator
            if metrics.get("phash") is not None:
                phash_val = metrics["phash"]
                if phash_val >= 0.95:
                    phash_quality = "🟒 Nearly Identical"
                elif phash_val >= 0.9:
                    phash_quality = "πŸ”΅ Very Similar"
                elif phash_val >= 0.8:
                    phash_quality = "🟑 Somewhat Similar"
                else:
                    phash_quality = "πŸ”΄ Different"
                comparison_metrics.append(
                    f"pHash: {phash_val:.3f} ({phash_quality} perceptually)"
                )

            # Color Histogram Correlation
            if metrics.get("color_hist_corr") is not None:
                color_val = metrics["color_hist_corr"]
                if color_val >= 0.9:
                    color_quality = "🟒 Very Similar Colors"
                elif color_val >= 0.8:
                    color_quality = "πŸ”΅ Similar Colors"
                elif color_val >= 0.6:
                    color_quality = "🟑 Moderate Color Diff"
                else:
                    color_quality = "πŸ”΄ Different Colors"
                comparison_metrics.append(f"Color: {color_val:.3f} ({color_quality})")

            # Add comparison metrics to info
            if comparison_metrics:
                info += "\nπŸ“Š Comparison Analysis: " + " | ".join(comparison_metrics)

            # === INDIVIDUAL VIDEO QUALITY ===
            individual_metrics = []

            # Individual Sharpness for each video
            if metrics.get("sharpness1") is not None:
                sharp1 = metrics["sharpness1"]
                if sharp1 >= 200:
                    sharp1_quality = "🟒 Sharp"
                elif sharp1 >= 100:
                    sharp1_quality = "πŸ”΅ Moderate"
                elif sharp1 >= 50:
                    sharp1_quality = "🟑 Soft"
                else:
                    sharp1_quality = "πŸ”΄ Blurry"
                individual_metrics.append(
                    f"V1 Sharpness: {sharp1:.0f} ({sharp1_quality})"
                )

            if metrics.get("sharpness2") is not None:
                sharp2 = metrics["sharpness2"]
                if sharp2 >= 200:
                    sharp2_quality = "🟒 Sharp"
                elif sharp2 >= 100:
                    sharp2_quality = "πŸ”΅ Moderate"
                elif sharp2 >= 50:
                    sharp2_quality = "🟑 Soft"
                else:
                    sharp2_quality = "πŸ”΄ Blurry"
                individual_metrics.append(
                    f"V2 Sharpness: {sharp2:.0f} ({sharp2_quality})"
                )

            # Sharpness comparison
            if (
                metrics.get("sharpness1") is not None
                and metrics.get("sharpness2") is not None
            ):
                sharp1 = metrics["sharpness1"]
                sharp2 = metrics["sharpness2"]

                # Calculate difference percentage
                diff_pct = abs(sharp1 - sharp2) / max(sharp1, sharp2) * 100

                # Determine significance with clearer labels
                if diff_pct > 20:
                    significance = "πŸ”΄ MAJOR difference"
                elif diff_pct > 10:
                    significance = "🟑 MODERATE difference"
                elif diff_pct > 5:
                    significance = "πŸ”΅ MINOR difference"
                else:
                    significance = "🟒 NEGLIGIBLE difference"

                # Determine which is sharper
                if sharp1 > sharp2:
                    comparison = "V1 is sharper"
                elif sharp2 > sharp1:
                    comparison = "V2 is sharper"
                else:
                    comparison = "Equal sharpness"

                individual_metrics.append(f"Sharpness: {comparison} ({significance})")

            # Add individual metrics to info
            if individual_metrics:
                info += "\n🎯 Individual Quality: " + " | ".join(individual_metrics)

            # === OVERALL QUALITY ASSESSMENT ===
            # Calculate combined quality score from multiple metrics
            quality_score = 0
            quality_count = 0
            metric_contributions = []

            # SSIM contribution
            if metrics.get("ssim") is not None:
                quality_score += metrics["ssim"]
                quality_count += 1
                metric_contributions.append(f"SSIM({metrics['ssim']:.3f})")

            # PSNR contribution (normalized to 0-1 scale)
            if metrics.get("psnr") is not None:
                psnr_norm = min(metrics["psnr"] / 50, 1.0)
                quality_score += psnr_norm
                quality_count += 1
                metric_contributions.append(f"PSNR({psnr_norm:.3f})")

            # pHash contribution
            if metrics.get("phash") is not None:
                quality_score += metrics["phash"]
                quality_count += 1
                metric_contributions.append(f"pHash({metrics['phash']:.3f})")

            if quality_count > 0:
                avg_quality = quality_score / quality_count

                # Add overall assessment with formula explanation
                if avg_quality >= 0.9:
                    overall = "✨ Excellent Overall"
                    quality_indicator = "🟒"
                elif avg_quality >= 0.8:
                    overall = "βœ… Good Overall"
                    quality_indicator = "πŸ”΅"
                elif avg_quality >= 0.6:
                    overall = "⚠️ Fair Overall"
                    quality_indicator = "🟑"
                else:
                    overall = "❌ Poor Overall"
                    quality_indicator = "πŸ”΄"

                # Calculate quality variation across all frames to show differences
                quality_variation = ""
                if self.computed_metrics and len(self.computed_metrics) > 1:
                    # Calculate overall quality for all frames to show variation
                    all_quality_scores = []
                    for metric in self.computed_metrics:
                        frame_quality = 0
                        frame_quality_count = 0

                        if metric.get("ssim") is not None:
                            frame_quality += metric["ssim"]
                            frame_quality_count += 1
                        if metric.get("psnr") is not None:
                            frame_quality += min(metric["psnr"] / 50, 1.0)
                            frame_quality_count += 1
                        if metric.get("phash") is not None:
                            frame_quality += metric["phash"]
                            frame_quality_count += 1

                        if frame_quality_count > 0:
                            all_quality_scores.append(
                                frame_quality / frame_quality_count
                            )

                    if len(all_quality_scores) > 1:
                        min_qual = min(all_quality_scores)
                        max_qual = max(all_quality_scores)
                        variation = max_qual - min_qual

                        if variation > 0.08:
                            quality_variation = (
                                f" | πŸ“Š High Variation (Ξ”{variation:.4f})"
                            )
                        elif variation > 0.04:
                            quality_variation = (
                                f" | πŸ“Š Moderate Variation (Ξ”{variation:.4f})"
                            )
                        elif variation > 0.02:
                            quality_variation = (
                                f" | πŸ“Š Low Variation (Ξ”{variation:.4f})"
                            )
                        else:
                            quality_variation = (
                                f" | πŸ“Š Stable Quality (Ξ”{variation:.4f})"
                            )

                info += f"\n🎯 Overall Quality: {quality_indicator} {avg_quality:.5f} ({overall}){quality_variation}"
                info += f"\n   πŸ’‘ Formula: Average of {' + '.join(metric_contributions)} = {avg_quality:.5f}"

        return info

    def get_updated_plot(self, frame_index):
        """Get updated plot with current frame highlighted"""
        if self.computed_metrics:
            return self.frame_metrics.create_individual_metric_plots(
                self.computed_metrics, int(frame_index)
            )
        return None


def load_examples_from_json(json_file_path="data.json"):
    """Load example video pairs from JSON configuration file"""
    try:
        with open(json_file_path, "r") as f:
            data = json.load(f)

        examples = []

        # Extract video pairs from the comparisons
        for comparison in data.get("comparisons", []):
            videos = comparison.get("videos", [])

            # Validate that video files/URLs exist or are accessible
            valid_videos = []
            for video_path in videos:
                if video_path:  # Check if not empty/None
                    # Check if it's a URL
                    if video_path.startswith(("http://", "https://")):
                        # For URLs, we'll assume they're valid (can't easily check without downloading)
                        # OpenCV will handle the validation during actual loading
                        valid_videos.append(video_path)
                        print(f"Added video URL: {video_path}")
                    else:
                        # Convert to absolute path for local files
                        abs_path = os.path.abspath(video_path)
                        if os.path.exists(abs_path):
                            valid_videos.append(abs_path)
                            print(f"Added local video file: {abs_path}")
                        elif os.path.exists(video_path):
                            # Try relative path as fallback
                            valid_videos.append(video_path)
                            print(f"Added local video file: {video_path}")
                        else:
                            print(
                                f"Warning: Local video file not found: {video_path} (abs: {abs_path})"
                            )

            # Add to examples if we have valid videos
            if len(valid_videos) == 2:
                examples.append(valid_videos)
            elif len(valid_videos) == 1:
                # Single video example (compare with None)
                examples.append([valid_videos[0], None])

        return examples

    except FileNotFoundError:
        print(f"Warning: {json_file_path} not found. No examples will be loaded.")
        return []
    except json.JSONDecodeError as e:
        print(f"Error parsing {json_file_path}: {e}")
        return []
    except Exception as e:
        print(f"Error loading examples: {e}")
        return []


def get_all_videos_from_json(json_file_path="data.json"):
    """Get list of all unique videos mentioned in the JSON file"""
    try:
        with open(json_file_path, "r") as f:
            data = json.load(f)

        all_videos = set()

        # Extract all unique video paths/URLs from comparisons
        for comparison in data.get("comparisons", []):
            videos = comparison.get("videos", [])
            for video_path in videos:
                if video_path:  # Only add non-empty paths
                    # Check if it's a URL or local file
                    if video_path.startswith(("http://", "https://")):
                        # For URLs, add them directly
                        all_videos.add(video_path)
                    elif os.path.exists(video_path):
                        # For local files, check existence before adding
                        all_videos.add(video_path)

        return sorted(list(all_videos))

    except FileNotFoundError:
        print(f"Warning: {json_file_path} not found.")
        return []
    except json.JSONDecodeError as e:
        print(f"Error parsing {json_file_path}: {e}")
        return []
    except Exception as e:
        print(f"Error loading videos: {e}")
        return []


def create_app():
    comparator = VideoFrameComparator()
    example_pairs = load_examples_from_json()
    print(f"DEBUG: Loaded {len(example_pairs)} example pairs")
    for i, pair in enumerate(example_pairs):
        print(f"  Example {i + 1}: {pair}")

    with gr.Blocks(
        title="Frame Arena - Video Frame Comparator",
        # theme=gr.themes.Soft(),
        fill_width=True,
        css="""
        /* Ensure plots adapt to theme */
        .plotly .main-svg {
            color: var(--body-text-color, #000) !important;
        }
        /* Grid visibility for both themes */
        .plotly .gridlayer .xgrid, .plotly .gridlayer .ygrid {
            stroke-opacity: 0.4 !important;
        }
        /* Axis text color adaptation */
        .plotly .xtick text, .plotly .ytick text {
            fill: var(--body-text-color, #000) !important;
        }
        /* Axis title color adaptation - multiple selectors for better coverage */
        .plotly .g-xtitle, .plotly .g-ytitle,
        .plotly .xtitle, .plotly .ytitle,
        .plotly text[class*="xtitle"], .plotly text[class*="ytitle"],
        .plotly .infolayer .g-xtitle, .plotly .infolayer .g-ytitle {
            fill: var(--body-text-color, #000) !important;
        }
        /* Additional axis title selectors */
        .plotly .subplot .xtitle, .plotly .subplot .ytitle,
        .plotly .cartesianlayer .xtitle, .plotly .cartesianlayer .ytitle {
            fill: var(--body-text-color, #000) !important;
        }
        /* SVG text elements in plots */
        .plotly svg text {
            fill: var(--body-text-color, #000) !important;
        }
        /* Legend text color */
        .plotly .legendtext, .plotly .legend text {
            fill: var(--body-text-color, #000) !important;
        }
        /* Hover label adaptation */
        .plotly .hoverlayer .hovertext, .plotly .hovertext {
            fill: var(--body-text-color, #000) !important;
            color: var(--body-text-color, #000) !important;
        }
        /* Annotation text */
        .plotly .annotation-text, .plotly .annotation {
            fill: var(--body-text-color, #000) !important;
        }
        /* Disable plot interactions except hover */
        .plotly .modebar {
            display: none !important;
        }
        .plotly .plot-container .plotly {
            pointer-events: none !important;
        }
        .plotly .plot-container .plotly .hoverlayer {
            pointer-events: auto !important;
        }
        .plotly .plot-container .plotly .hovertext {
            pointer-events: auto !important;
        }
        """,
    ) as app:
        gr.Markdown("""
        # 🎬 Frame Arena: Frame by frame comparisons of any videos

        > πŸŽ‰ This tool has been created to celebrate our Wan 2.2 [text-to-video](https://replicate.com/wan-video/wan-2.2-t2v-480p-fast) and [image-to-video](https://replicate.com/wan-video/wan-2.2-i2v-a14b) endpoints on Replicate. Want to know more? Check out [our blog](https://www.wan22.com/blog/video-optimization-on-replicate)!

        - Upload videos in common formats with the same number of frames (MP4, AVI, MOV, etc.) or use URLs
        - **7 Quality Metrics**: SSIM, PSNR, MSE, pHash, Color Histogram, Sharpness + Overall Quality
        - **Individual Visualization**: Each metric gets its own dedicated plot
        - **Real-time Analysis**: Navigate frames with live metric updates
        - **Smart Comparisons**: Understand differences between videos per metric

        **Perfect for**: Analyzing compression effects, processing artifacts, visual quality assessment, and compression algorithm comparisons.
        """)

        with gr.Row():
            with gr.Column():
                gr.Markdown("### Video 1")
                video1_input = gr.File(
                    label="Upload Video 1",
                    file_types=[
                        ".mp4",
                        ".avi",
                        ".mov",
                        ".mkv",
                        ".wmv",
                        ".flv",
                        ".webm",
                    ],
                    type="filepath",
                )

            with gr.Column():
                gr.Markdown("### Video 2")
                video2_input = gr.File(
                    label="Upload Video 2",
                    file_types=[
                        ".mp4",
                        ".avi",
                        ".mov",
                        ".mkv",
                        ".wmv",
                        ".flv",
                        ".webm",
                    ],
                    type="filepath",
                )

        # Add examples at the top for better UX
        if example_pairs:
            gr.Markdown("### πŸ“ Example Video Comparisons")
            gr.Examples(
                examples=example_pairs,
                inputs=[video1_input, video2_input],
                label="Click any example to load video pairs:",
                examples_per_page=10,
                run_on_click=False,  # We'll handle this manually
            )

        load_btn = gr.Button("πŸ”„ Load Videos", variant="primary", size="lg")

        # Frame comparison section (initially hidden)
        frame_display = gr.Row(visible=True)
        with frame_display:
            with gr.Column():
                gr.Markdown("### Video 1 - Current Frame")
                frame1_output = gr.Image(
                    label="Video 1 Frame",
                    type="numpy",
                    interactive=False,
                    # height=400,
                )

            with gr.Column():
                gr.Markdown("### Frame Slider (Left: Video 1, Right: Video 2)")
                image_slider = ImageSlider(
                    label="Drag to compare frames",
                    type="numpy",
                    interactive=True,
                    # height=400,
                )

            with gr.Column():
                gr.Markdown("### Video 2 - Current Frame")
                frame2_output = gr.Image(
                    label="Video 2 Frame",
                    type="numpy",
                    interactive=False,
                    # height=400,
                )

        # Frame navigation (initially hidden) - moved underneath frames
        frame_controls = gr.Row(visible=True)
        with frame_controls:
            frame_slider = gr.Slider(
                minimum=0,
                maximum=0,
                step=1,
                value=0,
                label="Frame Number",
                interactive=True,
            )

        # Comprehensive metrics visualization (initially hidden)
        metrics_section = gr.Row(visible=True)
        with metrics_section:
            with gr.Column():
                gr.Markdown("### πŸ“Š Metric Analysis")

                # Overall quality plot
                with gr.Row():
                    overall_plot = gr.Plot(
                        label="Overall Quality (Combined Metric [SSIM + normalized_PSNR + pHash])",
                        show_label=True,
                    )

                # Frame info moved below overall quality plot
                frame_info = gr.Textbox(
                    label="Frame Information & Metrics",
                    interactive=False,
                    value="",
                    lines=3,
                )

                # Add comprehensive usage guide underneath frame information & metrics
                with gr.Accordion("πŸ“– Usage Guide & Metrics Reference", open=False):
                    with gr.Row():
                        with gr.Column():
                            gr.Markdown("""
### πŸ“Š Metrics Explained
- **SSIM**: Structural Similarity (1.0 = identical structure, 0.0 = completely different)
- **PSNR**: Peak Signal-to-Noise Ratio in dB (higher = better quality, less noise)
- **MSE**: Mean Squared Error (lower = more similar pixel values)
- **pHash**: Perceptual Hash similarity (1.0 = visually identical)
- **Color Histogram**: Color distribution correlation (1.0 = identical color patterns)
- **Sharpness**: Laplacian variance per video (higher = sharper/more detailed images)
- **Overall Quality**: Combined metric averaging SSIM, min-max normalized PSNR, and pHash
                            """)
                        with gr.Column() as info_section:
                            status_output = gr.Textbox(
                                label="Status", interactive=False, lines=16
                            )

                    with gr.Row():
                        with gr.Column():
                            gr.Markdown("""
### 🎯 Quality Assessment Scale (Research-Based Thresholds)
**SSIM Scale** (based on human perception studies):
- 🟒 **Excellent (β‰₯0.9)**: Visually indistinguishable differences
- πŸ”΅ **Good (β‰₯0.8)**: Minor visible differences, still high quality
- 🟑 **Fair (β‰₯0.6)**: Noticeable differences, acceptable quality
- πŸ”΄ **Poor (<0.6)**: Significant visible artifacts and differences

**PSNR Scale** (standard video quality benchmarks):
- 🟒 **Excellent (β‰₯40dB)**: Professional broadcast quality
- πŸ”΅ **Good (β‰₯30dB)**: High consumer video quality
- 🟑 **Fair (β‰₯20dB)**: Acceptable for web streaming
- πŸ”΄ **Poor (<20dB)**: Low quality with visible compression artifacts

**MSE Scale** (pixel difference thresholds):
- 🟒 **Very Similar (≀50)**: Minimal pixel-level differences
- πŸ”΅ **Similar (≀100)**: Small differences, good quality preservation
- 🟑 **Moderately Different (≀200)**: Noticeable but acceptable differences
- πŸ”΄ **Very Different (>200)**: Significant pixel-level changes
                            """)
                        with gr.Column():
                            gr.Markdown("""
### πŸ” Understanding Comparisons
**Comparison Analysis**: Shows how similar/different the videos are
- Most metrics indicate **similarity** - not which video "wins"
- Higher SSIM/PSNR/pHash/Color = more similar videos
- Lower MSE = more similar videos

**Individual Quality**: Shows the quality of each video separately
- Sharpness comparison shows which video has more detail
- Significance levels: πŸ”΄ MAJOR (>20%), 🟑 MODERATE (10-20%), πŸ”΅ MINOR (5-10%), 🟒 NEGLIGIBLE (<5%)

**Overall Quality**: Combines multiple metrics to provide a single similarity score
- **Formula**: Average of [SSIM + normalized_PSNR + pHash]
- **PSNR Normalization**: PSNR values are divided by 50dB and capped at 1.0
- **Range**: 0.0 to 1.0 (higher = more similar videos overall)
- **Purpose**: Provides a single metric when you need one overall assessment
- **Limitation**: Different metrics may disagree; check individual metrics for details
                            """)

                # Individual metric plots
                with gr.Row():
                    ssim_plot = gr.Plot(label="SSIM", show_label=True)
                    psnr_plot = gr.Plot(label="PSNR", show_label=True)

                with gr.Row():
                    mse_plot = gr.Plot(label="MSE", show_label=True)
                    phash_plot = gr.Plot(label="pHash", show_label=True)

                with gr.Row():
                    color_plot = gr.Plot(label="Color Histogram", show_label=True)
                    sharpness_plot = gr.Plot(label="Sharpness", show_label=True)

        # Connect examples to auto-loading
        if example_pairs:
            # Use a manual approach to handle examples click
            def examples_manual_handler(video1, video2):
                print("DEBUG: Examples clicked manually!")
                return load_videos_handler(video1, video2)

            # Since we can't directly attach to examples, we'll use the change events

        # Event handlers
        def load_videos_handler(video1, video2):
            print(
                f"DEBUG: load_videos_handler called with video1={video1}, video2={video2}"
            )
            status, max_frames, frame1, frame2, info, plots = comparator.load_videos(
                video1, video2
            )

            # Update slider
            slider_update = gr.Slider(
                minimum=0,
                maximum=max_frames,
                step=1,
                value=0,
                interactive=True if max_frames > 0 else False,
            )

            # Show/hide sections based on whether videos were loaded successfully
            videos_loaded = max_frames > 0

            # Extract individual plots from the plots dictionary
            ssim_fig = plots.get("ssim") if plots else None
            psnr_fig = plots.get("psnr") if plots else None
            mse_fig = plots.get("mse") if plots else None
            phash_fig = plots.get("phash") if plots else None
            color_fig = plots.get("color_hist") if plots else None
            sharpness_fig = plots.get("sharpness") if plots else None
            overall_fig = plots.get("overall") if plots else None

            return (
                status,  # status_output
                slider_update,  # frame_slider
                frame1,  # frame1_output
                (frame1, frame2),  # image_slider
                frame2,  # frame2_output
                info,  # frame_info
                ssim_fig,  # ssim_plot
                psnr_fig,  # psnr_plot
                mse_fig,  # mse_plot
                phash_fig,  # phash_plot
                color_fig,  # color_plot
                sharpness_fig,  # sharpness_plot
                overall_fig,  # overall_plot
                gr.Row(visible=videos_loaded),  # frame_controls
                gr.Row(visible=videos_loaded),  # frame_display
                gr.Row(visible=videos_loaded and plots is not None),  # metrics_section
                gr.Row(visible=videos_loaded),  # info_section
            )

        def update_frames(frame_index):
            if comparator.max_frames == 0:
                return (
                    None,
                    None,
                    None,
                    "No videos loaded",
                    None,
                    None,
                    None,
                    None,
                    None,
                    None,
                    None,
                )

            frame1, frame2 = comparator.get_frames_at_index(frame_index)
            info = comparator.get_current_frame_info(frame_index)
            plots = comparator.get_updated_plot(frame_index)

            # Extract individual plots from the plots dictionary
            ssim_fig = plots.get("ssim") if plots else None
            psnr_fig = plots.get("psnr") if plots else None
            mse_fig = plots.get("mse") if plots else None
            phash_fig = plots.get("phash") if plots else None
            color_fig = plots.get("color_hist") if plots else None
            sharpness_fig = plots.get("sharpness") if plots else None
            overall_fig = plots.get("overall") if plots else None

            return (
                frame1,
                (frame1, frame2),
                frame2,
                info,
                ssim_fig,
                psnr_fig,
                mse_fig,
                phash_fig,
                color_fig,
                sharpness_fig,
                overall_fig,
            )

        # Auto-load when examples populate the inputs
        def auto_load_when_examples_change(video1, video2):
            print(
                f"DEBUG: auto_load_when_examples_change called with video1={video1}, video2={video2}"
            )
            # Only auto-load if both inputs are provided (from examples)
            if video1 and video2:
                print("DEBUG: Both videos present, calling load_videos_handler")
                return load_videos_handler(video1, video2)
            # If only one or no videos, return default empty state
            print("DEBUG: Not both videos present, returning default state")
            return (
                "Please upload videos or select an example",  # status_output
                gr.Slider(
                    minimum=0, maximum=0, step=1, value=0, interactive=False
                ),  # frame_slider
                None,  # frame1_output
                (None, None),  # image_slider
                None,  # frame2_output
                "",  # frame_info
                None,  # ssim_plot
                None,  # psnr_plot
                None,  # mse_plot
                None,  # phash_plot
                None,  # color_plot
                None,  # sharpness_plot
                None,  # overall_plot
                gr.Row(visible=True),  # frame_controls
                gr.Row(visible=True),  # frame_display
                gr.Row(visible=True),  # metrics_section
                gr.Row(visible=True),  # info_section
            )

        # Enhanced auto-load function with debouncing to prevent multiple rapid calls
        last_processed_pair = {"video1": None, "video2": None}

        def enhanced_auto_load(video1, video2):
            print(f"DEBUG: Input change detected! video1={video1}, video2={video2}")

            # Simple debouncing: skip if same video pair was just processed
            if (
                last_processed_pair["video1"] == video1
                and last_processed_pair["video2"] == video2
            ):
                print("DEBUG: Same video pair already processed, skipping...")
                # Return current state without recomputing
                return (
                    gr.update(),  # status_output
                    gr.update(),  # frame_slider
                    gr.update(),  # frame1_output
                    gr.update(),  # image_slider
                    gr.update(),  # frame2_output
                    gr.update(),  # frame_info
                    gr.update(),  # ssim_plot
                    gr.update(),  # psnr_plot
                    gr.update(),  # mse_plot
                    gr.update(),  # phash_plot
                    gr.update(),  # color_plot
                    gr.update(),  # sharpness_plot
                    gr.update(),  # overall_plot
                    gr.update(),  # frame_controls
                    gr.update(),  # frame_display
                    gr.update(),  # metrics_section
                    gr.update(),  # info_section
                )

            last_processed_pair["video1"] = video1
            last_processed_pair["video2"] = video2

            return auto_load_when_examples_change(video1, video2)

        # Auto-load when both video inputs change (triggered by examples)
        video1_input.change(
            fn=enhanced_auto_load,
            inputs=[video1_input, video2_input],
            outputs=[
                status_output,
                frame_slider,
                frame1_output,
                image_slider,
                frame2_output,
                frame_info,
                ssim_plot,
                psnr_plot,
                mse_plot,
                phash_plot,
                color_plot,
                sharpness_plot,
                overall_plot,
                frame_controls,
                frame_display,
                metrics_section,
                info_section,
            ],
        )

        video2_input.change(
            fn=enhanced_auto_load,
            inputs=[video1_input, video2_input],
            outputs=[
                status_output,
                frame_slider,
                frame1_output,
                image_slider,
                frame2_output,
                frame_info,
                ssim_plot,
                psnr_plot,
                mse_plot,
                phash_plot,
                color_plot,
                sharpness_plot,
                overall_plot,
                frame_controls,
                frame_display,
                metrics_section,
                info_section,
            ],
        )

        # Manual load button event handler with debug
        def debug_load_videos_handler(video1, video2):
            print(f"DEBUG: Load button clicked! video1={video1}, video2={video2}")
            return load_videos_handler(video1, video2)

        load_btn.click(
            fn=debug_load_videos_handler,
            inputs=[video1_input, video2_input],
            outputs=[
                status_output,
                frame_slider,
                frame1_output,
                image_slider,
                frame2_output,
                frame_info,
                ssim_plot,
                psnr_plot,
                mse_plot,
                phash_plot,
                color_plot,
                sharpness_plot,
                overall_plot,
                frame_controls,
                frame_display,
                metrics_section,
                info_section,
            ],
        )

        frame_slider.change(
            fn=update_frames,
            inputs=[frame_slider],
            outputs=[
                frame1_output,
                image_slider,
                frame2_output,
                frame_info,
                ssim_plot,
                psnr_plot,
                mse_plot,
                phash_plot,
                color_plot,
                sharpness_plot,
                overall_plot,
            ],
        )

    return app


def main():
    app = create_app()
    app.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
    )


if __name__ == "__main__":
    main()