File size: 13,726 Bytes
10d0bac be85e86 2619083 15b2d37 be85e86 15b2d37 2619083 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 be85e86 15b2d37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import streamlit as st
from streamlit_folium import st_folium
import folium
from folium.plugins import Draw
import pandas as pd
import geopandas as gpd
from shapely.geometry import Polygon, Point
import numpy as np
import re # For parsing STATEDAREA
st.set_page_config(layout="wide", page_title="Multiplex Coop Housing Filter")
st.title("🗺️ Multiplex Coop Housing Filter (Hugging Face Data)")
st.write("This app uses the `ProjectMultiplexCoop/PropertyBoundaries` dataset from Hugging Face. Draw a polygon on the map to spatially filter properties. Use the form below to apply additional filters based on property attributes. **Note: FSI, Building Coverage, Height, and Stories are synthetic for demonstration as they are not directly available in the dataset.**")
# --- 1. Load Data from Hugging Face and Process ---
@st.cache_data
def load_and_process_data():
"""
Loads the geospatial data from Hugging Face, processes relevant columns,
and generates synthetic data for missing attributes.
"""
try:
# Load the geospatial data using geopandas
# Ensure you have 'huggingface_hub', 'geopandas', 'fiona', 'pyproj', 'shapely' installed.
gdf = gpd.read_parquet("hf://datasets/ProjectMultiplexCoop/PropertyBoundaries/Property_Boundaries_4326.parquet")
except Exception as e:
st.error(f"Failed to load data from Hugging Face. Please ensure `huggingface_hub`, `geopandas`, `fiona`, and `pyproj` are installed. Error: {e}")
st.stop()
# Process STATEDAREA to numeric (Lot Area in Sq Metres)
# The format is like "17366.998291 sq.m"
def parse_stated_area(area_str):
if pd.isna(area_str):
return np.nan
match = re.search(r'(\d+\.?\d*)\s*sq\.m', str(area_str))
if match:
return float(match.group(1))
return np.nan
gdf['zn_area'] = gdf['STATEDAREA'].apply(parse_stated_area)
# Map FEATURE_TYPE to zn_type (Zoning Type)
gdf['zn_type'] = gdf['FEATURE_TYPE']
# Generate synthetic data for attributes not present in the Hugging Face dataset
# but required for the filter functionality as per the original HTML.
num_rows = len(gdf)
gdf['fsi_total'] = np.round(np.random.uniform(0.5, 3.0, num_rows), 2)
gdf['prcnt_cver'] = np.random.randint(20, 70, num_rows)
gdf['height_metres'] = np.round(np.random.uniform(5, 30, num_rows), 1)
gdf['stories'] = np.random.randint(2, 10, num_rows)
# Add unique ID and a display name
gdf['id'] = range(1, num_rows + 1)
gdf['name'] = gdf['PARCELID'].apply(lambda x: f"Parcel {x}")
# Ensure geometries are valid for centroid calculation and plotting
# .buffer(0) is a common trick to fix minor geometry issues
gdf['geometry'] = gdf['geometry'].buffer(0)
# Extract centroids for point-based filtering and initial map markers
gdf['latitude'] = gdf.geometry.centroid.y
gdf['longitude'] = gdf.geometry.centroid.x
# Select and reorder relevant columns for display and filtering
df_processed = gdf[[
'id', 'name', 'latitude', 'longitude', 'geometry',
'zn_type', 'zn_area', 'fsi_total', 'prcnt_cver', 'height_metres', 'stories',
'PARCELID', # Original Parcel ID for reference
'ADDRESS_NUMBER', 'LINEAR_NAME_FULL' # For detailed address in tooltips
]].copy()
return df_processed
df = load_and_process_data()
# Initialize filtered_df with the full dataframe for initial state
filtered_df = df.copy()
# --- 2. Initialize the Folium Map with Drawing Tools ---
# Center the map around the mean of the actual data's centroids
m = folium.Map(location=[df['latitude'].mean(), df['longitude'].mean()], zoom_start=12)
# Add drawing tools to the map
draw = Draw(
export=True,
filename="drawn_polygon.geojson",
position="topleft",
draw_options={
"polyline": False, "rectangle": False, "circlemarker": False,
"circle": False, "marker": False,
"polygon": {
"allowIntersection": False, # Restricts polygons to not intersect themselves
"drawError": {"color": "#e0115f", "message": "Oups!"},
"shapeOptions": {"color": "#ef233c", "fillOpacity": 0.5},
},
},
edit_options={"edit": False, "remove": True},
)
m.add_child(draw)
# Add a sample of points to the initial map for responsiveness
# Plotting all 500k+ polygons/points at once can cause performance issues.
sample_df_for_initial_map = df.sample(min(1000, len(df)), random_state=42) # Sample up to 1000 points
for idx, row in sample_df_for_initial_map.iterrows():
folium.CircleMarker(
location=[row['latitude'], row['longitude']],
radius=3, # Smaller radius for denser data points
color='blue',
fill=True,
fill_color='blue',
fill_opacity=0.5,
tooltip=(
f"Parcel ID: {row['PARCELID']}<br>Name: {row['name']}<br>Zoning: {row['zn_type']}<br>"
f"Area: {row['zn_area'] if pd.notna(row['zn_area']) else 'N/A'} m²<br>"
f"FSI: {row['fsi_total']}<br>Coverage: {row['prcnt_cver']}%<br>"
f"Height: {row['height_metres']}m<br>Stories: {row['stories']}<br>"
f"Address: {row['ADDRESS_NUMBER'] if pd.notna(row['ADDRESS_NUMBER']) else ''} {row['LINEAR_NAME_FULL'] if pd.notna(row['LINEAR_NAME_FULL']) else ''}"
)
).add_to(m)
st.subheader("Draw a Polygon on the Map")
st.info(f"Displaying a sample of {len(sample_df_for_initial_map)} points on the map for responsiveness. All {len(df)} properties will be used for filtering.")
output = st_folium(m, width=1000, height=600, returned_objects=["all_draw_features"])
polygon_drawn = False
shapely_polygon = None
polygon_coords = None
if output and output["all_draw_features"]:
polygons = [
feature["geometry"]["coordinates"]
for feature in output["all_draw_features"]
if feature["geometry"]["type"] == "Polygon"
]
if polygons:
polygon_coords = polygons[-1][0] # Get the coordinates of the last drawn polygon
# Shapely Polygon expects (lon, lat) tuples, Folium provides (lat, lon)
shapely_polygon = Polygon([(lon, lat) for lat, lon in polygon_coords])
polygon_drawn = True
# Apply spatial filter to the full dataframe based on centroid containment
filtered_df = df[
df.apply(
lambda row: shapely_polygon.contains(Point(row['longitude'], row['latitude'])),
axis=1
)
].copy() # Use .copy() to avoid SettingWithCopyWarning
st.success(f"Initially filtered {len(filtered_df)} properties within the drawn polygon.")
else:
st.info("Draw a polygon on the map to spatially filter properties.")
else:
st.info("Draw a polygon on the map to spatially filter properties.")
# --- 3. Attribute Filtering Form ---
st.subheader("Filter Property Attributes")
with st.form("attribute_filters"):
col1, col2 = st.columns(2)
with col1:
# Zoning Type filter
# Get unique zoning types from the loaded data, including a default 'All' option
all_zoning_types = ['All Resdidential Zoning (0, 101, 6)'] + sorted(df['zn_type'].unique().tolist())
selected_zn_type = st.selectbox("Zoning Type", all_zoning_types, key="zn_type_select")
# Lot Area in Sq Metres filter
# Use actual min/max from data for number input range
min_zn_area = st.number_input(
"Minimum Lot Area in Sq Metres",
min_value=float(df['zn_area'].min() if pd.notna(df['zn_area'].min()) else 0),
value=float(df['zn_area'].min() if pd.notna(df['zn_area'].min()) else 0),
step=100.0,
key="zn_area_input"
)
# Floor Space Index (FSI) filter - Synthetic data
min_fsi_total = st.number_input("Minimum Floor Space Index (FSI)", min_value=0.0, value=0.0, step=0.1, format="%.2f", key="fsi_total_input")
with col2:
# Building Percent Coverage filter - Synthetic data
max_prcnt_cver = st.number_input("Maximum Building Percent Coverage (%)", min_value=0, value=100, step=1, key="prcnt_cver_input")
# Height or Stories selection - Synthetic data
height_stories_option = st.radio(
"Filter by",
("Height", "Stories"),
index=0, # Default to Height
key="height_stories_radio"
)
# Single input field for height/stories, label changes dynamically
if height_stories_option == "Height":
min_height_value = st.number_input("Minimum Height in Metres", min_value=0.0, value=0.0, step=0.1, format="%.1f", key="height_input")
else: # Stories
min_stories_value = st.number_input("Minimum Stories", min_value=0, value=0, step=1, key="stories_input")
submitted = st.form_submit_button("Apply Attribute Filters")
if submitted:
# Apply attribute filters to the already spatially filtered_df
if selected_zn_type != 'All Resdidential Zoning (0, 101, 6)':
filtered_df = filtered_df[filtered_df['zn_type'] == selected_zn_type]
# Handle NaN values for zn_area before comparison by treating NaN as 0 for min comparison
filtered_df = filtered_df[filtered_df['zn_area'].fillna(0) >= min_zn_area]
if min_fsi_total > 0:
filtered_df = filtered_df[filtered_df['fsi_total'] >= min_fsi_total]
if max_prcnt_cver < 100: # Assuming 100% means no upper limit applied
filtered_df = filtered_df[filtered_df['prcnt_cver'] <= max_prcnt_cver]
if height_stories_option == "Height" and min_height_value > 0:
filtered_df = filtered_df[filtered_df['height_metres'] >= min_height_value]
elif height_stories_option == "Stories" and min_stories_value > 0:
filtered_df = filtered_df[filtered_df['stories'] >= min_stories_value]
st.success(f"Applied attribute filters. Total properties after all filters: {len(filtered_df)}")
else:
st.info("Adjust filters and click 'Apply Attribute Filters'.")
# --- 4. Display Filtered Data on a New Map and as a Table ---
st.subheader("Filtered Properties")
if not filtered_df.empty:
# Create a new map to show only the filtered properties
if len(filtered_df) > 0:
# Calculate bounds for filtered data to set appropriate zoom
min_lat, max_lat = filtered_df['latitude'].min(), filtered_df['latitude'].max()
min_lon, max_lon = filtered_df['longitude'].min(), filtered_df['longitude'].max()
# Adjust map center and zoom dynamically based on filtered data extent
if min_lat == max_lat and min_lon == max_lon:
filtered_map_center = [min_lat, min_lon]
filtered_map_zoom = 18 # Very close zoom for single point
else:
filtered_map_center = [filtered_df['latitude'].mean(), filtered_df['longitude'].mean()]
# Simple heuristic for zoom level based on spatial extent
lat_diff = max_lat - min_lat
lon_diff = max_lon - min_lon
if max(lat_diff, lon_diff) < 0.001: filtered_map_zoom = 18
elif max(lat_diff, lon_diff) < 0.01: filtered_map_zoom = 16
elif max(lat_diff, lon_diff) < 0.1: filtered_map_zoom = 14
else: filtered_map_zoom = 12
else:
# Fallback to original map center if no data is filtered
filtered_map_center = [df['latitude'].mean(), df['longitude'].mean()]
filtered_map_zoom = 12
filtered_m = folium.Map(location=filtered_map_center, zoom_start=filtered_map_zoom)
# Add the drawn polygon to the new map if it exists
if polygon_drawn and polygon_coords:
folium.Polygon(
locations=polygon_coords, # Use original (lat,lon) for folium
color="#ef233c",
fill=True,
fill_color="#ef233c",
fill_opacity=0.5
).add_to(filtered_m)
# Convert filtered_df back to GeoDataFrame for direct plotting of geometries
filtered_gdf = gpd.GeoDataFrame(filtered_df, geometry='geometry')
# Add filtered polygons to the map as GeoJSON layer
folium.GeoJson(
filtered_gdf.to_json(),
style_function=lambda x: {
'fillColor': 'green',
'color': 'darkgreen',
'weight': 1,
'fillOpacity': 0.7
},
tooltip=folium.GeoJsonTooltip(
fields=['PARCELID', 'zn_type', 'zn_area', 'fsi_total', 'prcnt_cver', 'height_metres', 'stories', 'ADDRESS_NUMBER', 'LINEAR_NAME_FULL'],
aliases=['Parcel ID:', 'Zoning Type:', 'Lot Area (m²):', 'FSI:', 'Coverage (%):', 'Height (m):', 'Stories:', 'Address Num:', 'Street:'],
localize=True
)
).add_to(filtered_m)
st_folium(filtered_m, width=1000, height=500)
st.subheader("Filtered Properties Table")
# Display relevant columns in the table
display_cols = ['PARCELID', 'zn_type', 'zn_area', 'fsi_total', 'prcnt_cver', 'height_metres', 'stories', 'ADDRESS_NUMBER', 'LINEAR_NAME_FULL']
st.dataframe(filtered_df[display_cols])
# --- 5. Export Data Button ---
csv = filtered_df.to_csv(index=False).encode('utf-8')
st.download_button(
label="Export Filtered Data to CSV",
data=csv,
file_name="multiplex_coop_filtered_properties.csv",
mime="text/csv",
)
else:
st.warning("No properties match the current filters. Try adjusting your criteria or drawing a different polygon.")
st.markdown("---")
st.markdown("This app demonstrates spatial and attribute filtering on the ProjectMultiplexCoop/PropertyBoundaries dataset from Hugging Face. FSI, Building Coverage, Height, and Stories are synthetic for demonstration.") |