Update src/streamlit_app.py
Browse files- src/streamlit_app.py +154 -91
src/streamlit_app.py
CHANGED
@@ -3,87 +3,125 @@ from streamlit_folium import st_folium
|
|
3 |
import folium
|
4 |
from folium.plugins import Draw
|
5 |
import pandas as pd
|
|
|
6 |
from shapely.geometry import Polygon, Point
|
7 |
import numpy as np
|
|
|
8 |
|
9 |
-
st.set_page_config(layout="wide", page_title="Multiplex Coop
|
10 |
|
11 |
-
st.title("🗺️ Multiplex Coop Housing Filter")
|
12 |
-
st.write("Draw a polygon on the map to filter
|
13 |
|
14 |
-
# --- 1.
|
15 |
@st.cache_data
|
16 |
-
def
|
17 |
-
|
18 |
-
data
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
'
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
filtered_df = df.copy()
|
37 |
|
38 |
# --- 2. Initialize the Folium Map with Drawing Tools ---
|
39 |
-
# Center the map around the
|
40 |
m = folium.Map(location=[df['latitude'].mean(), df['longitude'].mean()], zoom_start=12)
|
41 |
|
42 |
-
# Add drawing tools
|
43 |
draw = Draw(
|
44 |
export=True,
|
45 |
filename="drawn_polygon.geojson",
|
46 |
position="topleft",
|
47 |
draw_options={
|
48 |
-
"polyline": False,
|
49 |
-
"
|
50 |
-
"circlemarker": False,
|
51 |
-
"circle": False,
|
52 |
-
"marker": False,
|
53 |
"polygon": {
|
54 |
-
"allowIntersection": False,
|
55 |
-
"drawError": {
|
56 |
-
|
57 |
-
"message": "Oups!",
|
58 |
-
},
|
59 |
-
"shapeOptions": {
|
60 |
-
"color": "#ef233c",
|
61 |
-
"fillOpacity": 0.5,
|
62 |
-
},
|
63 |
},
|
64 |
},
|
65 |
edit_options={"edit": False, "remove": True},
|
66 |
)
|
67 |
m.add_child(draw)
|
68 |
|
69 |
-
# Add
|
70 |
-
|
|
|
|
|
|
|
71 |
folium.CircleMarker(
|
72 |
location=[row['latitude'], row['longitude']],
|
73 |
-
radius=
|
74 |
color='blue',
|
75 |
fill=True,
|
76 |
fill_color='blue',
|
77 |
-
fill_opacity=0.
|
78 |
tooltip=(
|
79 |
-
f"ID: {row['
|
80 |
-
f"Area: {row['zn_area']
|
81 |
-
f"
|
82 |
-
f"Stories: {row['stories']}"
|
|
|
83 |
)
|
84 |
).add_to(m)
|
85 |
|
86 |
st.subheader("Draw a Polygon on the Map")
|
|
|
87 |
output = st_folium(m, width=1000, height=600, returned_objects=["all_draw_features"])
|
88 |
|
89 |
polygon_drawn = False
|
@@ -98,23 +136,23 @@ if output and output["all_draw_features"]:
|
|
98 |
]
|
99 |
|
100 |
if polygons:
|
101 |
-
polygon_coords = polygons[-1][0] # Get the last drawn polygon
|
102 |
-
# Shapely Polygon expects (lon, lat) tuples, Folium
|
103 |
shapely_polygon = Polygon([(lon, lat) for lat, lon in polygon_coords])
|
104 |
polygon_drawn = True
|
105 |
|
106 |
-
# Apply spatial filter
|
107 |
filtered_df = df[
|
108 |
df.apply(
|
109 |
lambda row: shapely_polygon.contains(Point(row['longitude'], row['latitude'])),
|
110 |
axis=1
|
111 |
)
|
112 |
].copy() # Use .copy() to avoid SettingWithCopyWarning
|
113 |
-
st.success(f"Initially filtered {len(filtered_df)}
|
114 |
else:
|
115 |
-
st.info("Draw a polygon on the map to spatially filter
|
116 |
else:
|
117 |
-
st.info("Draw a polygon on the map to spatially filter
|
118 |
|
119 |
# --- 3. Attribute Filtering Form ---
|
120 |
st.subheader("Filter Property Attributes")
|
@@ -123,21 +161,29 @@ with st.form("attribute_filters"):
|
|
123 |
col1, col2 = st.columns(2)
|
124 |
|
125 |
with col1:
|
126 |
-
# Zoning Type
|
|
|
127 |
all_zoning_types = ['All Resdidential Zoning (0, 101, 6)'] + sorted(df['zn_type'].unique().tolist())
|
128 |
selected_zn_type = st.selectbox("Zoning Type", all_zoning_types, key="zn_type_select")
|
129 |
|
130 |
-
# Lot Area in Sq Metres
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
-
# Floor Space Index (FSI)
|
134 |
min_fsi_total = st.number_input("Minimum Floor Space Index (FSI)", min_value=0.0, value=0.0, step=0.1, format="%.2f", key="fsi_total_input")
|
135 |
|
136 |
with col2:
|
137 |
-
# Building Percent Coverage
|
138 |
max_prcnt_cver = st.number_input("Maximum Building Percent Coverage (%)", min_value=0, value=100, step=1, key="prcnt_cver_input")
|
139 |
|
140 |
-
# Height or Stories selection
|
141 |
height_stories_option = st.radio(
|
142 |
"Filter by",
|
143 |
("Height", "Stories"),
|
@@ -158,8 +204,8 @@ with st.form("attribute_filters"):
|
|
158 |
if selected_zn_type != 'All Resdidential Zoning (0, 101, 6)':
|
159 |
filtered_df = filtered_df[filtered_df['zn_type'] == selected_zn_type]
|
160 |
|
161 |
-
|
162 |
-
|
163 |
|
164 |
if min_fsi_total > 0:
|
165 |
filtered_df = filtered_df[filtered_df['fsi_total'] >= min_fsi_total]
|
@@ -172,23 +218,36 @@ with st.form("attribute_filters"):
|
|
172 |
elif height_stories_option == "Stories" and min_stories_value > 0:
|
173 |
filtered_df = filtered_df[filtered_df['stories'] >= min_stories_value]
|
174 |
|
175 |
-
st.success(f"Applied attribute filters. Total
|
176 |
else:
|
177 |
-
# If form not submitted, the filtered_df remains as it was after spatial filtering
|
178 |
st.info("Adjust filters and click 'Apply Attribute Filters'.")
|
179 |
|
180 |
|
181 |
# --- 4. Display Filtered Data on a New Map and as a Table ---
|
182 |
-
st.subheader("Filtered
|
183 |
|
184 |
if not filtered_df.empty:
|
185 |
-
# Create a new map to show only the filtered
|
186 |
-
# Adjust map center and zoom if filtered_df is very small or empty,
|
187 |
-
# otherwise use the original map's center or the filtered_df's center.
|
188 |
if len(filtered_df) > 0:
|
189 |
-
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
else:
|
|
|
192 |
filtered_map_center = [df['latitude'].mean(), df['longitude'].mean()]
|
193 |
filtered_map_zoom = 12
|
194 |
|
@@ -204,39 +263,43 @@ if not filtered_df.empty:
|
|
204 |
fill_opacity=0.5
|
205 |
).add_to(filtered_m)
|
206 |
|
207 |
-
#
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
)
|
222 |
-
|
|
|
|
|
223 |
|
224 |
st_folium(filtered_m, width=1000, height=500)
|
225 |
|
226 |
-
st.subheader("Filtered
|
227 |
-
|
|
|
|
|
228 |
|
229 |
# --- 5. Export Data Button ---
|
230 |
csv = filtered_df.to_csv(index=False).encode('utf-8')
|
231 |
st.download_button(
|
232 |
label="Export Filtered Data to CSV",
|
233 |
data=csv,
|
234 |
-
file_name="
|
235 |
mime="text/csv",
|
236 |
)
|
237 |
|
238 |
else:
|
239 |
-
st.warning("No
|
240 |
|
241 |
st.markdown("---")
|
242 |
-
st.markdown("This app demonstrates spatial filtering
|
|
|
3 |
import folium
|
4 |
from folium.plugins import Draw
|
5 |
import pandas as pd
|
6 |
+
import geopandas as gpd
|
7 |
from shapely.geometry import Polygon, Point
|
8 |
import numpy as np
|
9 |
+
import re # For parsing STATEDAREA
|
10 |
|
11 |
+
st.set_page_config(layout="wide", page_title="Multiplex Coop Housing Filter")
|
12 |
|
13 |
+
st.title("🗺️ Multiplex Coop Housing Filter (Hugging Face Data)")
|
14 |
+
st.write("This app uses the `ProjectMultiplexCoop/PropertyBoundaries` dataset from Hugging Face. Draw a polygon on the map to spatially filter properties. Use the form below to apply additional filters based on property attributes. **Note: FSI, Building Coverage, Height, and Stories are synthetic for demonstration as they are not directly available in the dataset.**")
|
15 |
|
16 |
+
# --- 1. Load Data from Hugging Face and Process ---
|
17 |
@st.cache_data
|
18 |
+
def load_and_process_data():
|
19 |
+
"""
|
20 |
+
Loads the geospatial data from Hugging Face, processes relevant columns,
|
21 |
+
and generates synthetic data for missing attributes.
|
22 |
+
"""
|
23 |
+
try:
|
24 |
+
# Load the geospatial data using geopandas
|
25 |
+
# Ensure you have 'huggingface_hub', 'geopandas', 'fiona', 'pyproj', 'shapely' installed.
|
26 |
+
gdf = gpd.read_parquet("hf://datasets/ProjectMultiplexCoop/PropertyBoundaries/Property_Boundaries_4326.parquet")
|
27 |
+
except Exception as e:
|
28 |
+
st.error(f"Failed to load data from Hugging Face. Please ensure `huggingface_hub`, `geopandas`, `fiona`, and `pyproj` are installed. Error: {e}")
|
29 |
+
st.stop()
|
30 |
+
|
31 |
+
# Process STATEDAREA to numeric (Lot Area in Sq Metres)
|
32 |
+
# The format is like "17366.998291 sq.m"
|
33 |
+
def parse_stated_area(area_str):
|
34 |
+
if pd.isna(area_str):
|
35 |
+
return np.nan
|
36 |
+
match = re.search(r'(\d+\.?\d*)\s*sq\.m', str(area_str))
|
37 |
+
if match:
|
38 |
+
return float(match.group(1))
|
39 |
+
return np.nan
|
40 |
+
|
41 |
+
gdf['zn_area'] = gdf['STATEDAREA'].apply(parse_stated_area)
|
42 |
+
|
43 |
+
# Map FEATURE_TYPE to zn_type (Zoning Type)
|
44 |
+
gdf['zn_type'] = gdf['FEATURE_TYPE']
|
45 |
+
|
46 |
+
# Generate synthetic data for attributes not present in the Hugging Face dataset
|
47 |
+
# but required for the filter functionality as per the original HTML.
|
48 |
+
num_rows = len(gdf)
|
49 |
+
gdf['fsi_total'] = np.round(np.random.uniform(0.5, 3.0, num_rows), 2)
|
50 |
+
gdf['prcnt_cver'] = np.random.randint(20, 70, num_rows)
|
51 |
+
gdf['height_metres'] = np.round(np.random.uniform(5, 30, num_rows), 1)
|
52 |
+
gdf['stories'] = np.random.randint(2, 10, num_rows)
|
53 |
+
|
54 |
+
# Add unique ID and a display name
|
55 |
+
gdf['id'] = range(1, num_rows + 1)
|
56 |
+
gdf['name'] = gdf['PARCELID'].apply(lambda x: f"Parcel {x}")
|
57 |
+
|
58 |
+
# Ensure geometries are valid for centroid calculation and plotting
|
59 |
+
# .buffer(0) is a common trick to fix minor geometry issues
|
60 |
+
gdf['geometry'] = gdf['geometry'].buffer(0)
|
61 |
+
# Extract centroids for point-based filtering and initial map markers
|
62 |
+
gdf['latitude'] = gdf.geometry.centroid.y
|
63 |
+
gdf['longitude'] = gdf.geometry.centroid.x
|
64 |
+
|
65 |
+
# Select and reorder relevant columns for display and filtering
|
66 |
+
df_processed = gdf[[
|
67 |
+
'id', 'name', 'latitude', 'longitude', 'geometry',
|
68 |
+
'zn_type', 'zn_area', 'fsi_total', 'prcnt_cver', 'height_metres', 'stories',
|
69 |
+
'PARCELID', # Original Parcel ID for reference
|
70 |
+
'ADDRESS_NUMBER', 'LINEAR_NAME_FULL' # For detailed address in tooltips
|
71 |
+
]].copy()
|
72 |
+
|
73 |
+
return df_processed
|
74 |
+
|
75 |
+
df = load_and_process_data()
|
76 |
+
|
77 |
+
# Initialize filtered_df with the full dataframe for initial state
|
78 |
filtered_df = df.copy()
|
79 |
|
80 |
# --- 2. Initialize the Folium Map with Drawing Tools ---
|
81 |
+
# Center the map around the mean of the actual data's centroids
|
82 |
m = folium.Map(location=[df['latitude'].mean(), df['longitude'].mean()], zoom_start=12)
|
83 |
|
84 |
+
# Add drawing tools to the map
|
85 |
draw = Draw(
|
86 |
export=True,
|
87 |
filename="drawn_polygon.geojson",
|
88 |
position="topleft",
|
89 |
draw_options={
|
90 |
+
"polyline": False, "rectangle": False, "circlemarker": False,
|
91 |
+
"circle": False, "marker": False,
|
|
|
|
|
|
|
92 |
"polygon": {
|
93 |
+
"allowIntersection": False, # Restricts polygons to not intersect themselves
|
94 |
+
"drawError": {"color": "#e0115f", "message": "Oups!"},
|
95 |
+
"shapeOptions": {"color": "#ef233c", "fillOpacity": 0.5},
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
},
|
97 |
},
|
98 |
edit_options={"edit": False, "remove": True},
|
99 |
)
|
100 |
m.add_child(draw)
|
101 |
|
102 |
+
# Add a sample of points to the initial map for responsiveness
|
103 |
+
# Plotting all 500k+ polygons/points at once can cause performance issues.
|
104 |
+
sample_df_for_initial_map = df.sample(min(1000, len(df)), random_state=42) # Sample up to 1000 points
|
105 |
+
|
106 |
+
for idx, row in sample_df_for_initial_map.iterrows():
|
107 |
folium.CircleMarker(
|
108 |
location=[row['latitude'], row['longitude']],
|
109 |
+
radius=3, # Smaller radius for denser data points
|
110 |
color='blue',
|
111 |
fill=True,
|
112 |
fill_color='blue',
|
113 |
+
fill_opacity=0.5,
|
114 |
tooltip=(
|
115 |
+
f"Parcel ID: {row['PARCELID']}<br>Name: {row['name']}<br>Zoning: {row['zn_type']}<br>"
|
116 |
+
f"Area: {row['zn_area'] if pd.notna(row['zn_area']) else 'N/A'} m²<br>"
|
117 |
+
f"FSI: {row['fsi_total']}<br>Coverage: {row['prcnt_cver']}%<br>"
|
118 |
+
f"Height: {row['height_metres']}m<br>Stories: {row['stories']}<br>"
|
119 |
+
f"Address: {row['ADDRESS_NUMBER'] if pd.notna(row['ADDRESS_NUMBER']) else ''} {row['LINEAR_NAME_FULL'] if pd.notna(row['LINEAR_NAME_FULL']) else ''}"
|
120 |
)
|
121 |
).add_to(m)
|
122 |
|
123 |
st.subheader("Draw a Polygon on the Map")
|
124 |
+
st.info(f"Displaying a sample of {len(sample_df_for_initial_map)} points on the map for responsiveness. All {len(df)} properties will be used for filtering.")
|
125 |
output = st_folium(m, width=1000, height=600, returned_objects=["all_draw_features"])
|
126 |
|
127 |
polygon_drawn = False
|
|
|
136 |
]
|
137 |
|
138 |
if polygons:
|
139 |
+
polygon_coords = polygons[-1][0] # Get the coordinates of the last drawn polygon
|
140 |
+
# Shapely Polygon expects (lon, lat) tuples, Folium provides (lat, lon)
|
141 |
shapely_polygon = Polygon([(lon, lat) for lat, lon in polygon_coords])
|
142 |
polygon_drawn = True
|
143 |
|
144 |
+
# Apply spatial filter to the full dataframe based on centroid containment
|
145 |
filtered_df = df[
|
146 |
df.apply(
|
147 |
lambda row: shapely_polygon.contains(Point(row['longitude'], row['latitude'])),
|
148 |
axis=1
|
149 |
)
|
150 |
].copy() # Use .copy() to avoid SettingWithCopyWarning
|
151 |
+
st.success(f"Initially filtered {len(filtered_df)} properties within the drawn polygon.")
|
152 |
else:
|
153 |
+
st.info("Draw a polygon on the map to spatially filter properties.")
|
154 |
else:
|
155 |
+
st.info("Draw a polygon on the map to spatially filter properties.")
|
156 |
|
157 |
# --- 3. Attribute Filtering Form ---
|
158 |
st.subheader("Filter Property Attributes")
|
|
|
161 |
col1, col2 = st.columns(2)
|
162 |
|
163 |
with col1:
|
164 |
+
# Zoning Type filter
|
165 |
+
# Get unique zoning types from the loaded data, including a default 'All' option
|
166 |
all_zoning_types = ['All Resdidential Zoning (0, 101, 6)'] + sorted(df['zn_type'].unique().tolist())
|
167 |
selected_zn_type = st.selectbox("Zoning Type", all_zoning_types, key="zn_type_select")
|
168 |
|
169 |
+
# Lot Area in Sq Metres filter
|
170 |
+
# Use actual min/max from data for number input range
|
171 |
+
min_zn_area = st.number_input(
|
172 |
+
"Minimum Lot Area in Sq Metres",
|
173 |
+
min_value=float(df['zn_area'].min() if pd.notna(df['zn_area'].min()) else 0),
|
174 |
+
value=float(df['zn_area'].min() if pd.notna(df['zn_area'].min()) else 0),
|
175 |
+
step=100.0,
|
176 |
+
key="zn_area_input"
|
177 |
+
)
|
178 |
|
179 |
+
# Floor Space Index (FSI) filter - Synthetic data
|
180 |
min_fsi_total = st.number_input("Minimum Floor Space Index (FSI)", min_value=0.0, value=0.0, step=0.1, format="%.2f", key="fsi_total_input")
|
181 |
|
182 |
with col2:
|
183 |
+
# Building Percent Coverage filter - Synthetic data
|
184 |
max_prcnt_cver = st.number_input("Maximum Building Percent Coverage (%)", min_value=0, value=100, step=1, key="prcnt_cver_input")
|
185 |
|
186 |
+
# Height or Stories selection - Synthetic data
|
187 |
height_stories_option = st.radio(
|
188 |
"Filter by",
|
189 |
("Height", "Stories"),
|
|
|
204 |
if selected_zn_type != 'All Resdidential Zoning (0, 101, 6)':
|
205 |
filtered_df = filtered_df[filtered_df['zn_type'] == selected_zn_type]
|
206 |
|
207 |
+
# Handle NaN values for zn_area before comparison by treating NaN as 0 for min comparison
|
208 |
+
filtered_df = filtered_df[filtered_df['zn_area'].fillna(0) >= min_zn_area]
|
209 |
|
210 |
if min_fsi_total > 0:
|
211 |
filtered_df = filtered_df[filtered_df['fsi_total'] >= min_fsi_total]
|
|
|
218 |
elif height_stories_option == "Stories" and min_stories_value > 0:
|
219 |
filtered_df = filtered_df[filtered_df['stories'] >= min_stories_value]
|
220 |
|
221 |
+
st.success(f"Applied attribute filters. Total properties after all filters: {len(filtered_df)}")
|
222 |
else:
|
|
|
223 |
st.info("Adjust filters and click 'Apply Attribute Filters'.")
|
224 |
|
225 |
|
226 |
# --- 4. Display Filtered Data on a New Map and as a Table ---
|
227 |
+
st.subheader("Filtered Properties")
|
228 |
|
229 |
if not filtered_df.empty:
|
230 |
+
# Create a new map to show only the filtered properties
|
|
|
|
|
231 |
if len(filtered_df) > 0:
|
232 |
+
# Calculate bounds for filtered data to set appropriate zoom
|
233 |
+
min_lat, max_lat = filtered_df['latitude'].min(), filtered_df['latitude'].max()
|
234 |
+
min_lon, max_lon = filtered_df['longitude'].min(), filtered_df['longitude'].max()
|
235 |
+
|
236 |
+
# Adjust map center and zoom dynamically based on filtered data extent
|
237 |
+
if min_lat == max_lat and min_lon == max_lon:
|
238 |
+
filtered_map_center = [min_lat, min_lon]
|
239 |
+
filtered_map_zoom = 18 # Very close zoom for single point
|
240 |
+
else:
|
241 |
+
filtered_map_center = [filtered_df['latitude'].mean(), filtered_df['longitude'].mean()]
|
242 |
+
# Simple heuristic for zoom level based on spatial extent
|
243 |
+
lat_diff = max_lat - min_lat
|
244 |
+
lon_diff = max_lon - min_lon
|
245 |
+
if max(lat_diff, lon_diff) < 0.001: filtered_map_zoom = 18
|
246 |
+
elif max(lat_diff, lon_diff) < 0.01: filtered_map_zoom = 16
|
247 |
+
elif max(lat_diff, lon_diff) < 0.1: filtered_map_zoom = 14
|
248 |
+
else: filtered_map_zoom = 12
|
249 |
else:
|
250 |
+
# Fallback to original map center if no data is filtered
|
251 |
filtered_map_center = [df['latitude'].mean(), df['longitude'].mean()]
|
252 |
filtered_map_zoom = 12
|
253 |
|
|
|
263 |
fill_opacity=0.5
|
264 |
).add_to(filtered_m)
|
265 |
|
266 |
+
# Convert filtered_df back to GeoDataFrame for direct plotting of geometries
|
267 |
+
filtered_gdf = gpd.GeoDataFrame(filtered_df, geometry='geometry')
|
268 |
+
|
269 |
+
# Add filtered polygons to the map as GeoJSON layer
|
270 |
+
folium.GeoJson(
|
271 |
+
filtered_gdf.to_json(),
|
272 |
+
style_function=lambda x: {
|
273 |
+
'fillColor': 'green',
|
274 |
+
'color': 'darkgreen',
|
275 |
+
'weight': 1,
|
276 |
+
'fillOpacity': 0.7
|
277 |
+
},
|
278 |
+
tooltip=folium.GeoJsonTooltip(
|
279 |
+
fields=['PARCELID', 'zn_type', 'zn_area', 'fsi_total', 'prcnt_cver', 'height_metres', 'stories', 'ADDRESS_NUMBER', 'LINEAR_NAME_FULL'],
|
280 |
+
aliases=['Parcel ID:', 'Zoning Type:', 'Lot Area (m²):', 'FSI:', 'Coverage (%):', 'Height (m):', 'Stories:', 'Address Num:', 'Street:'],
|
281 |
+
localize=True
|
282 |
+
)
|
283 |
+
).add_to(filtered_m)
|
284 |
|
285 |
st_folium(filtered_m, width=1000, height=500)
|
286 |
|
287 |
+
st.subheader("Filtered Properties Table")
|
288 |
+
# Display relevant columns in the table
|
289 |
+
display_cols = ['PARCELID', 'zn_type', 'zn_area', 'fsi_total', 'prcnt_cver', 'height_metres', 'stories', 'ADDRESS_NUMBER', 'LINEAR_NAME_FULL']
|
290 |
+
st.dataframe(filtered_df[display_cols])
|
291 |
|
292 |
# --- 5. Export Data Button ---
|
293 |
csv = filtered_df.to_csv(index=False).encode('utf-8')
|
294 |
st.download_button(
|
295 |
label="Export Filtered Data to CSV",
|
296 |
data=csv,
|
297 |
+
file_name="multiplex_coop_filtered_properties.csv",
|
298 |
mime="text/csv",
|
299 |
)
|
300 |
|
301 |
else:
|
302 |
+
st.warning("No properties match the current filters. Try adjusting your criteria or drawing a different polygon.")
|
303 |
|
304 |
st.markdown("---")
|
305 |
+
st.markdown("This app demonstrates spatial and attribute filtering on the ProjectMultiplexCoop/PropertyBoundaries dataset from Hugging Face. FSI, Building Coverage, Height, and Stories are synthetic for demonstration.")
|