Praveen998 commited on
Commit
1e31304
·
1 Parent(s): 41d0af2

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +87 -57
app.py CHANGED
@@ -26,79 +26,109 @@ def on_btn_click():
26
 
27
 
28
  def main():
29
- st.title(" 3D Visualisation")
30
- z_data = pd.read_csv(
31
- "https://raw.githubusercontent.com/plotly/datasets/master/api_docs/mt_bruno_elevation.csv"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  )
33
- fig = go.Figure(data=go.Surface(z=z_data, showscale=False))
34
- fig.update_layout(
35
- title="Mt Bruno Elevation",
36
- width=400,
37
- height=400,
38
- margin=dict(t=40, r=0, l=20, b=20),
39
- )
40
- name = "default"
41
- camera = dict(
42
- up=dict(x=0, y=0, z=1),
43
- center=dict(x=0, y=0, z=0),
44
- eye=dict(x=1.25, y=1.25, z=1.25),
45
- )
46
- fig.update_layout(scene_camera=camera, title=name)
47
- st.plotly_chart(fig)
48
- df = px.data.election()
49
- geojson = px.data.election_geojson()
50
- fig = px.choropleth_mapbox(
51
- df,
52
- geojson=geojson,
53
- color="Bergeron",
54
- locations="district",
55
- featureidkey="properties.district",
56
- center={"lat": 45.5517, "lon": -73.7073},
57
- mapbox_style="carto-positron",
58
- zoom=9,
59
  )
60
- st.plotly_chart(fig)
61
  fig = make_subplots(
62
  rows=2,
63
  cols=2,
 
 
64
  specs=[
65
- [{"type": "surface"}, {"type": "surface"}],
66
- [{"type": "surface"}, {"type": "surface"}],
67
  ],
68
  )
69
- x = np.linspace(-5, 80, 10)
70
- y = np.linspace(-5, 60, 10)
71
- xGrid, yGrid = np.meshgrid(y, x)
72
- z = xGrid ** 3 + yGrid ** 3
73
  fig.add_trace(
74
- go.Surface(x=x, y=y, z=z, colorscale="Viridis", showscale=False), row=1, col=1
 
 
 
 
 
 
 
 
 
75
  )
76
  fig.add_trace(
77
- go.Surface(x=x, y=y, z=z, colorscale="RdBu", showscale=False), row=1, col=2
 
 
 
 
 
 
 
78
  )
79
- fig.add_trace(
80
- go.Surface(x=x, y=y, z=z, colorscale="YlOrRd", showscale=False), row=2, col=1
81
- )
82
- fig.add_trace(
83
- go.Surface(x=x, y=y, z=z, colorscale="YlGnBu", showscale=False), row=2, col=2
 
 
84
  )
 
85
  fig.update_layout(
86
- title_text="3D subplots with different colorscales", height=800, width=800
87
- )
88
- st.plotly_chart(fig)
89
- fig = px.scatter_3d(
90
- px.data.iris(),
91
- x="sepal_length",
92
- y="sepal_width",
93
- z="petal_width",
94
- color="petal_length",
95
- size="petal_length",
96
- size_max=18,
97
- symbol="species",
98
- opacity=0.7,
99
  )
100
- fig.update_layout(margin=dict(l=0, r=0, b=0, t=0))
101
  st.plotly_chart(fig)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
 
103
 
104
  if __name__ == "__main__":
 
26
 
27
 
28
  def main():
29
+ st.title(" Corona Dashboard")
30
+ (
31
+ col1,
32
+ col2,
33
+ ) = st.columns(2)
34
+ with col1:
35
+ option = st.selectbox(" San Francisco", [" San Francisco"])
36
+ with col2:
37
+ option = st.selectbox(" Monthly / Weekly", [" Monthly ", " Weekly"])
38
+ if st.checkbox(" Show raw data"):
39
+ st.write("Checkbox checked!")
40
+ if st.button(" Visualize"):
41
+ st.write("Button clicked!")
42
+ st.subheader(" Global Data")
43
+ df = pd.read_csv(
44
+ "https://raw.githubusercontent.com/plotly/datasets/master/volcano_db.csv",
45
+ encoding="iso-8859-1",
46
  )
47
+ freq = df
48
+ freq = freq.Country.value_counts().reset_index().rename(columns={"count": "x"})
49
+ df_v = pd.read_csv(
50
+ "https://raw.githubusercontent.com/plotly/datasets/master/volcano.csv"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  )
 
52
  fig = make_subplots(
53
  rows=2,
54
  cols=2,
55
+ column_widths=[0.6, 0.4],
56
+ row_heights=[0.4, 0.6],
57
  specs=[
58
+ [{"type": "scattergeo", "rowspan": 2}, {"type": "bar"}],
59
+ [None, {"type": "surface"}],
60
  ],
61
  )
 
 
 
 
62
  fig.add_trace(
63
+ go.Scattergeo(
64
+ lat=df["Latitude"],
65
+ lon=df["Longitude"],
66
+ mode="markers",
67
+ hoverinfo="text",
68
+ showlegend=False,
69
+ marker=dict(color="crimson", size=4, opacity=0.8),
70
+ ),
71
+ row=1,
72
+ col=1,
73
  )
74
  fig.add_trace(
75
+ go.Bar(
76
+ x=freq["x"][0:10],
77
+ y=freq["Country"][0:10],
78
+ marker=dict(color="crimson"),
79
+ showlegend=False,
80
+ ),
81
+ row=1,
82
+ col=2,
83
  )
84
+ fig.add_trace(go.Surface(z=df_v.values.tolist(), showscale=False), row=2, col=2)
85
+ fig.update_geos(
86
+ projection_type="orthographic",
87
+ landcolor="white",
88
+ oceancolor="MidnightBlue",
89
+ showocean=True,
90
+ lakecolor="LightBlue",
91
  )
92
+ fig.update_xaxes(tickangle=45)
93
  fig.update_layout(
94
+ template="plotly_dark",
95
+ margin=dict(r=10, t=25, b=40, l=60),
96
+ annotations=[
97
+ dict(
98
+ text="Source: NOAA",
99
+ showarrow=False,
100
+ xref="paper",
101
+ yref="paper",
102
+ x=0,
103
+ y=0,
104
+ )
105
+ ],
 
106
  )
 
107
  st.plotly_chart(fig)
108
+ (
109
+ col1,
110
+ col2,
111
+ ) = st.columns(2)
112
+ with col1:
113
+ st.table(
114
+ {
115
+ "Country": ["USA", "Canada", "UK", "Australia"],
116
+ "Population (millions)": [331, 38, 66, 25],
117
+ "GDP (trillion USD)": [22.675, 1.843, 2.855, 1.488],
118
+ }
119
+ )
120
+ with col2:
121
+ df = px.data.gapminder().query("year == 2007").query("continent == 'Americas'")
122
+ fig = px.pie(
123
+ df,
124
+ values="pop",
125
+ names="country",
126
+ title="Population of American continent",
127
+ hover_data=["lifeExp"],
128
+ labels={"lifeExp": "life expectancy"},
129
+ )
130
+ fig.update_traces(textposition="inside", textinfo="percent+label")
131
+ st.plotly_chart(fig)
132
 
133
 
134
  if __name__ == "__main__":