Praveen998 commited on
Commit
41d0af2
·
1 Parent(s): 7ba23b8

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +68 -148
app.py CHANGED
@@ -26,159 +26,79 @@ def on_btn_click():
26
 
27
 
28
  def main():
29
- st.title(" All Graphs")
30
- (
31
- col1,
32
- col2,
33
- ) = st.columns(2)
34
- with col1:
35
- st.line_chart(
36
- pd.DataFrame(
37
- {
38
- "Apple": yf.download("AAPL", start="2023-01-01", end="2023-07-31")[
39
- "Adj Close"
40
- ],
41
- "Google": yf.download(
42
- "GOOGL", start="2023-01-01", end="2023-07-31"
43
- )["Adj Close"],
44
- "Microsoft": yf.download(
45
- "MSFT", start="2023-01-01", end="2023-07-31"
46
- )["Adj Close"],
47
- }
48
- )
49
- )
50
- with col2:
51
- data = pd.DataFrame(
52
- {"X": [1, 2, 3, 4, 5], "Y1": [10, 16, 8, 14, 12], "Y2": [5, 8, 3, 6, 7]}
53
- )
54
- st.area_chart(data)
55
- st.plotly_chart(
56
- ff.create_distplot(
57
- [np.random.randn(200) - 2, np.random.randn(200), np.random.randn(200) + 2],
58
- ["Negative Shift", "Normal", "Positive Shift"],
59
- bin_size=[0.1, 0.25, 0.5],
60
- ),
61
- use_container_width=True,
62
  )
63
- source = vds.cars()
64
- chart = {
65
- "mark": "point",
66
- "encoding": {
67
- "x": {"field": "Horsepower", "type": "quantitative"},
68
- "y": {"field": "Miles_per_Gallon", "type": "quantitative"},
69
- "color": {"field": "Origin", "type": "nominal"},
70
- "shape": {"field": "Origin", "type": "nominal"},
71
- },
72
- }
73
- tab1, tab2 = st.tabs(["Streamlit theme (default)", "Vega-Lite native theme"])
74
- with tab1:
75
- st.vega_lite_chart(source, chart, theme="streamlit", use_container_width=True)
76
- with tab2:
77
- st.vega_lite_chart(source, chart, theme=None, use_container_width=True)
78
- st.altair_chart(
79
- alt.Chart(
80
- pd.DataFrame(
81
- {
82
- "x": np.random.rand(50),
83
- "y": np.random.rand(50),
84
- "size": np.random.randint(10, 100, 50),
85
- "color": np.random.rand(50),
86
- }
87
- )
88
- )
89
- .mark_circle()
90
- .encode(
91
- x="x",
92
- y="y",
93
- size="size",
94
- color="color",
95
- tooltip=["x", "y", "size", "color"],
96
- )
97
- .properties(width=600, height=400),
98
- use_container_width=True,
99
  )
100
- st.bar_chart(
101
- pd.DataFrame(np.random.randn(20, 3), columns=["Apple", "Banana", "Cherry"])
 
 
 
102
  )
103
- st.pydeck_chart(
104
- pdk.Deck(
105
- map_style=None,
106
- initial_view_state=pdk.ViewState(
107
- latitude=37.76, longitude=-122.4, zoom=11, pitch=50
108
- ),
109
- layers=[
110
- pdk.Layer(
111
- "HexagonLayer",
112
- data=pd.DataFrame(
113
- np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
114
- columns=["lat", "lon"],
115
- ),
116
- get_position="[lon, lat]",
117
- radius=200,
118
- elevation_scale=4,
119
- elevation_range=[0, 1000],
120
- pickable=True,
121
- extruded=True,
122
- ),
123
- pdk.Layer(
124
- "ScatterplotLayer",
125
- data=pd.DataFrame(
126
- np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
127
- columns=["lat", "lon"],
128
- ),
129
- get_position="[lon, lat]",
130
- get_color="[200, 30, 0, 160]",
131
- get_radius=200,
132
- ),
133
- ],
134
- )
135
  )
136
- import datetime
137
-
138
- np.random.seed(1)
139
- programmers = ["Alex", "Nicole", "Sara", "Etienne", "Chelsea", "Jody", "Marianne"]
140
- base = datetime.datetime.today()
141
- dates = base - np.arange(180) * datetime.timedelta(days=1)
142
- z = np.random.poisson(size=(len(programmers), len(dates)))
143
- fig = go.Figure(data=go.Heatmap(z=z, x=dates, y=programmers, colorscale="Viridis"))
144
- fig.update_layout(title="GitHub commits per day", xaxis_nticks=36)
145
  st.plotly_chart(fig)
146
- (
147
- col1,
148
- col2,
149
- ) = st.columns(2)
150
- with col1:
151
- df = px.data.gapminder().query("year == 2007").query("continent == 'Americas'")
152
- fig = px.pie(
153
- df,
154
- values="pop",
155
- names="country",
156
- title="Population of American continent",
157
- hover_data=["lifeExp"],
158
- labels={"lifeExp": "life expectancy"},
159
- )
160
- fig.update_traces(textposition="inside", textinfo="percent+label")
161
- st.plotly_chart(fig)
162
- with col2:
163
- fig = go.Figure(
164
- go.Sunburst(
165
- labels=[
166
- "Eve",
167
- "Cain",
168
- "Seth",
169
- "Enos",
170
- "Noam",
171
- "Abel",
172
- "Awan",
173
- "Enoch",
174
- "Azura",
175
- ],
176
- parents=["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve"],
177
- values=[10, 14, 12, 10, 2, 6, 6, 4, 4],
178
- )
179
- )
180
- fig.update_layout(margin=dict(t=0, l=0, r=0, b=0))
181
- st.plotly_chart(fig)
 
 
 
 
 
182
 
183
 
184
  if __name__ == "__main__":
 
26
 
27
 
28
  def main():
29
+ st.title(" 3D Visualisation")
30
+ z_data = pd.read_csv(
31
+ "https://raw.githubusercontent.com/plotly/datasets/master/api_docs/mt_bruno_elevation.csv"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  )
33
+ fig = go.Figure(data=go.Surface(z=z_data, showscale=False))
34
+ fig.update_layout(
35
+ title="Mt Bruno Elevation",
36
+ width=400,
37
+ height=400,
38
+ margin=dict(t=40, r=0, l=20, b=20),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  )
40
+ name = "default"
41
+ camera = dict(
42
+ up=dict(x=0, y=0, z=1),
43
+ center=dict(x=0, y=0, z=0),
44
+ eye=dict(x=1.25, y=1.25, z=1.25),
45
  )
46
+ fig.update_layout(scene_camera=camera, title=name)
47
+ st.plotly_chart(fig)
48
+ df = px.data.election()
49
+ geojson = px.data.election_geojson()
50
+ fig = px.choropleth_mapbox(
51
+ df,
52
+ geojson=geojson,
53
+ color="Bergeron",
54
+ locations="district",
55
+ featureidkey="properties.district",
56
+ center={"lat": 45.5517, "lon": -73.7073},
57
+ mapbox_style="carto-positron",
58
+ zoom=9,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  )
 
 
 
 
 
 
 
 
 
60
  st.plotly_chart(fig)
61
+ fig = make_subplots(
62
+ rows=2,
63
+ cols=2,
64
+ specs=[
65
+ [{"type": "surface"}, {"type": "surface"}],
66
+ [{"type": "surface"}, {"type": "surface"}],
67
+ ],
68
+ )
69
+ x = np.linspace(-5, 80, 10)
70
+ y = np.linspace(-5, 60, 10)
71
+ xGrid, yGrid = np.meshgrid(y, x)
72
+ z = xGrid ** 3 + yGrid ** 3
73
+ fig.add_trace(
74
+ go.Surface(x=x, y=y, z=z, colorscale="Viridis", showscale=False), row=1, col=1
75
+ )
76
+ fig.add_trace(
77
+ go.Surface(x=x, y=y, z=z, colorscale="RdBu", showscale=False), row=1, col=2
78
+ )
79
+ fig.add_trace(
80
+ go.Surface(x=x, y=y, z=z, colorscale="YlOrRd", showscale=False), row=2, col=1
81
+ )
82
+ fig.add_trace(
83
+ go.Surface(x=x, y=y, z=z, colorscale="YlGnBu", showscale=False), row=2, col=2
84
+ )
85
+ fig.update_layout(
86
+ title_text="3D subplots with different colorscales", height=800, width=800
87
+ )
88
+ st.plotly_chart(fig)
89
+ fig = px.scatter_3d(
90
+ px.data.iris(),
91
+ x="sepal_length",
92
+ y="sepal_width",
93
+ z="petal_width",
94
+ color="petal_length",
95
+ size="petal_length",
96
+ size_max=18,
97
+ symbol="species",
98
+ opacity=0.7,
99
+ )
100
+ fig.update_layout(margin=dict(l=0, r=0, b=0, t=0))
101
+ st.plotly_chart(fig)
102
 
103
 
104
  if __name__ == "__main__":