Spaces:
Sleeping
Sleeping
Commit
·
41d0af2
1
Parent(s):
7ba23b8
Upload folder using huggingface_hub
Browse files
app.py
CHANGED
@@ -26,159 +26,79 @@ def on_btn_click():
|
|
26 |
|
27 |
|
28 |
def main():
|
29 |
-
st.title("
|
30 |
-
(
|
31 |
-
|
32 |
-
col2,
|
33 |
-
) = st.columns(2)
|
34 |
-
with col1:
|
35 |
-
st.line_chart(
|
36 |
-
pd.DataFrame(
|
37 |
-
{
|
38 |
-
"Apple": yf.download("AAPL", start="2023-01-01", end="2023-07-31")[
|
39 |
-
"Adj Close"
|
40 |
-
],
|
41 |
-
"Google": yf.download(
|
42 |
-
"GOOGL", start="2023-01-01", end="2023-07-31"
|
43 |
-
)["Adj Close"],
|
44 |
-
"Microsoft": yf.download(
|
45 |
-
"MSFT", start="2023-01-01", end="2023-07-31"
|
46 |
-
)["Adj Close"],
|
47 |
-
}
|
48 |
-
)
|
49 |
-
)
|
50 |
-
with col2:
|
51 |
-
data = pd.DataFrame(
|
52 |
-
{"X": [1, 2, 3, 4, 5], "Y1": [10, 16, 8, 14, 12], "Y2": [5, 8, 3, 6, 7]}
|
53 |
-
)
|
54 |
-
st.area_chart(data)
|
55 |
-
st.plotly_chart(
|
56 |
-
ff.create_distplot(
|
57 |
-
[np.random.randn(200) - 2, np.random.randn(200), np.random.randn(200) + 2],
|
58 |
-
["Negative Shift", "Normal", "Positive Shift"],
|
59 |
-
bin_size=[0.1, 0.25, 0.5],
|
60 |
-
),
|
61 |
-
use_container_width=True,
|
62 |
)
|
63 |
-
|
64 |
-
|
65 |
-
"
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
"color": {"field": "Origin", "type": "nominal"},
|
70 |
-
"shape": {"field": "Origin", "type": "nominal"},
|
71 |
-
},
|
72 |
-
}
|
73 |
-
tab1, tab2 = st.tabs(["Streamlit theme (default)", "Vega-Lite native theme"])
|
74 |
-
with tab1:
|
75 |
-
st.vega_lite_chart(source, chart, theme="streamlit", use_container_width=True)
|
76 |
-
with tab2:
|
77 |
-
st.vega_lite_chart(source, chart, theme=None, use_container_width=True)
|
78 |
-
st.altair_chart(
|
79 |
-
alt.Chart(
|
80 |
-
pd.DataFrame(
|
81 |
-
{
|
82 |
-
"x": np.random.rand(50),
|
83 |
-
"y": np.random.rand(50),
|
84 |
-
"size": np.random.randint(10, 100, 50),
|
85 |
-
"color": np.random.rand(50),
|
86 |
-
}
|
87 |
-
)
|
88 |
-
)
|
89 |
-
.mark_circle()
|
90 |
-
.encode(
|
91 |
-
x="x",
|
92 |
-
y="y",
|
93 |
-
size="size",
|
94 |
-
color="color",
|
95 |
-
tooltip=["x", "y", "size", "color"],
|
96 |
-
)
|
97 |
-
.properties(width=600, height=400),
|
98 |
-
use_container_width=True,
|
99 |
)
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
102 |
)
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
get_position="[lon, lat]",
|
117 |
-
radius=200,
|
118 |
-
elevation_scale=4,
|
119 |
-
elevation_range=[0, 1000],
|
120 |
-
pickable=True,
|
121 |
-
extruded=True,
|
122 |
-
),
|
123 |
-
pdk.Layer(
|
124 |
-
"ScatterplotLayer",
|
125 |
-
data=pd.DataFrame(
|
126 |
-
np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
|
127 |
-
columns=["lat", "lon"],
|
128 |
-
),
|
129 |
-
get_position="[lon, lat]",
|
130 |
-
get_color="[200, 30, 0, 160]",
|
131 |
-
get_radius=200,
|
132 |
-
),
|
133 |
-
],
|
134 |
-
)
|
135 |
)
|
136 |
-
import datetime
|
137 |
-
|
138 |
-
np.random.seed(1)
|
139 |
-
programmers = ["Alex", "Nicole", "Sara", "Etienne", "Chelsea", "Jody", "Marianne"]
|
140 |
-
base = datetime.datetime.today()
|
141 |
-
dates = base - np.arange(180) * datetime.timedelta(days=1)
|
142 |
-
z = np.random.poisson(size=(len(programmers), len(dates)))
|
143 |
-
fig = go.Figure(data=go.Heatmap(z=z, x=dates, y=programmers, colorscale="Viridis"))
|
144 |
-
fig.update_layout(title="GitHub commits per day", xaxis_nticks=36)
|
145 |
st.plotly_chart(fig)
|
146 |
-
(
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
)
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
|
184 |
if __name__ == "__main__":
|
|
|
26 |
|
27 |
|
28 |
def main():
|
29 |
+
st.title(" 3D Visualisation")
|
30 |
+
z_data = pd.read_csv(
|
31 |
+
"https://raw.githubusercontent.com/plotly/datasets/master/api_docs/mt_bruno_elevation.csv"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
)
|
33 |
+
fig = go.Figure(data=go.Surface(z=z_data, showscale=False))
|
34 |
+
fig.update_layout(
|
35 |
+
title="Mt Bruno Elevation",
|
36 |
+
width=400,
|
37 |
+
height=400,
|
38 |
+
margin=dict(t=40, r=0, l=20, b=20),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
)
|
40 |
+
name = "default"
|
41 |
+
camera = dict(
|
42 |
+
up=dict(x=0, y=0, z=1),
|
43 |
+
center=dict(x=0, y=0, z=0),
|
44 |
+
eye=dict(x=1.25, y=1.25, z=1.25),
|
45 |
)
|
46 |
+
fig.update_layout(scene_camera=camera, title=name)
|
47 |
+
st.plotly_chart(fig)
|
48 |
+
df = px.data.election()
|
49 |
+
geojson = px.data.election_geojson()
|
50 |
+
fig = px.choropleth_mapbox(
|
51 |
+
df,
|
52 |
+
geojson=geojson,
|
53 |
+
color="Bergeron",
|
54 |
+
locations="district",
|
55 |
+
featureidkey="properties.district",
|
56 |
+
center={"lat": 45.5517, "lon": -73.7073},
|
57 |
+
mapbox_style="carto-positron",
|
58 |
+
zoom=9,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
st.plotly_chart(fig)
|
61 |
+
fig = make_subplots(
|
62 |
+
rows=2,
|
63 |
+
cols=2,
|
64 |
+
specs=[
|
65 |
+
[{"type": "surface"}, {"type": "surface"}],
|
66 |
+
[{"type": "surface"}, {"type": "surface"}],
|
67 |
+
],
|
68 |
+
)
|
69 |
+
x = np.linspace(-5, 80, 10)
|
70 |
+
y = np.linspace(-5, 60, 10)
|
71 |
+
xGrid, yGrid = np.meshgrid(y, x)
|
72 |
+
z = xGrid ** 3 + yGrid ** 3
|
73 |
+
fig.add_trace(
|
74 |
+
go.Surface(x=x, y=y, z=z, colorscale="Viridis", showscale=False), row=1, col=1
|
75 |
+
)
|
76 |
+
fig.add_trace(
|
77 |
+
go.Surface(x=x, y=y, z=z, colorscale="RdBu", showscale=False), row=1, col=2
|
78 |
+
)
|
79 |
+
fig.add_trace(
|
80 |
+
go.Surface(x=x, y=y, z=z, colorscale="YlOrRd", showscale=False), row=2, col=1
|
81 |
+
)
|
82 |
+
fig.add_trace(
|
83 |
+
go.Surface(x=x, y=y, z=z, colorscale="YlGnBu", showscale=False), row=2, col=2
|
84 |
+
)
|
85 |
+
fig.update_layout(
|
86 |
+
title_text="3D subplots with different colorscales", height=800, width=800
|
87 |
+
)
|
88 |
+
st.plotly_chart(fig)
|
89 |
+
fig = px.scatter_3d(
|
90 |
+
px.data.iris(),
|
91 |
+
x="sepal_length",
|
92 |
+
y="sepal_width",
|
93 |
+
z="petal_width",
|
94 |
+
color="petal_length",
|
95 |
+
size="petal_length",
|
96 |
+
size_max=18,
|
97 |
+
symbol="species",
|
98 |
+
opacity=0.7,
|
99 |
+
)
|
100 |
+
fig.update_layout(margin=dict(l=0, r=0, b=0, t=0))
|
101 |
+
st.plotly_chart(fig)
|
102 |
|
103 |
|
104 |
if __name__ == "__main__":
|