File size: 5,963 Bytes
2bab301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03e560e
9473f6e
 
 
 
 
03e560e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9473f6e
03e560e
 
 
 
 
 
 
 
 
 
 
41d0af2
03e560e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bab301
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import streamlit as st
import pandas as pd
import numpy as np
import yfinance as yf
import altair as alt
import plotly.figure_factory as ff
import pydeck as pdk
from vega_datasets import data as vds
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from streamlit_image_comparison import image_comparison


def on_input_change():
    user_input = st.session_state.user_input
    st.session_state.past.append(user_input)
    st.session_state.generated.append(
        {"data": "The messages from Bot\nWith new line", "type": "normal"}
    )


def on_btn_click():
    del st.session_state.past[:]
    del st.session_state.generated[:]


def main():
    st.title(" All Graphs")
    (
        col1,
        col2,
    ) = st.columns(2)
    with col1:
        st.line_chart(
            pd.DataFrame(
                {
                    "Apple": yf.download("AAPL", start="2023-01-01", end="2023-07-31")[
                        "Adj Close"
                    ],
                    "Google": yf.download(
                        "GOOGL", start="2023-01-01", end="2023-07-31"
                    )["Adj Close"],
                    "Microsoft": yf.download(
                        "MSFT", start="2023-01-01", end="2023-07-31"
                    )["Adj Close"],
                }
            )
        )
    with col2:
        data = pd.DataFrame(
            {"X": [1, 2, 3, 4, 5], "Y1": [10, 16, 8, 14, 12], "Y2": [5, 8, 3, 6, 7]}
        )
        st.area_chart(data)
    st.plotly_chart(
        ff.create_distplot(
            [np.random.randn(200) - 2, np.random.randn(200), np.random.randn(200) + 2],
            ["Negative Shift", "Normal", "Positive Shift"],
            bin_size=[0.1, 0.25, 0.5],
        ),
        use_container_width=True,
    )
    source = vds.cars()
    chart = {
        "mark": "point",
        "encoding": {
            "x": {"field": "Horsepower", "type": "quantitative"},
            "y": {"field": "Miles_per_Gallon", "type": "quantitative"},
            "color": {"field": "Origin", "type": "nominal"},
            "shape": {"field": "Origin", "type": "nominal"},
        },
    }
    tab1, tab2 = st.tabs(["Streamlit theme (default)", "Vega-Lite native theme"])
    with tab1:
        st.vega_lite_chart(source, chart, theme="streamlit", use_container_width=True)
    with tab2:
        st.vega_lite_chart(source, chart, theme=None, use_container_width=True)
    st.altair_chart(
        alt.Chart(
            pd.DataFrame(
                {
                    "x": np.random.rand(50),
                    "y": np.random.rand(50),
                    "size": np.random.randint(10, 100, 50),
                    "color": np.random.rand(50),
                }
            )
        )
        .mark_circle()
        .encode(
            x="x",
            y="y",
            size="size",
            color="color",
            tooltip=["x", "y", "size", "color"],
        )
        .properties(width=600, height=400),
        use_container_width=True,
    )
    st.bar_chart(
        pd.DataFrame(np.random.randn(20, 3), columns=["Apple", "Banana", "Cherry"])
    )
    st.pydeck_chart(
        pdk.Deck(
            map_style=None,
            initial_view_state=pdk.ViewState(
                latitude=37.76, longitude=-122.4, zoom=11, pitch=50
            ),
            layers=[
                pdk.Layer(
                    "HexagonLayer",
                    data=pd.DataFrame(
                        np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
                        columns=["lat", "lon"],
                    ),
                    get_position="[lon, lat]",
                    radius=200,
                    elevation_scale=4,
                    elevation_range=[0, 1000],
                    pickable=True,
                    extruded=True,
                ),
                pdk.Layer(
                    "ScatterplotLayer",
                    data=pd.DataFrame(
                        np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
                        columns=["lat", "lon"],
                    ),
                    get_position="[lon, lat]",
                    get_color="[200, 30, 0, 160]",
                    get_radius=200,
                ),
            ],
        )
    )
    import datetime

    np.random.seed(1)
    programmers = ["Alex", "Nicole", "Sara", "Etienne", "Chelsea", "Jody", "Marianne"]
    base = datetime.datetime.today()
    dates = base - np.arange(180) * datetime.timedelta(days=1)
    z = np.random.poisson(size=(len(programmers), len(dates)))
    fig = go.Figure(data=go.Heatmap(z=z, x=dates, y=programmers, colorscale="Viridis"))
    fig.update_layout(title="GitHub commits per day", xaxis_nticks=36)
    st.plotly_chart(fig)
    (
        col1,
        col2,
    ) = st.columns(2)
    with col1:
        df = px.data.gapminder().query("year == 2007").query("continent == 'Americas'")
        fig = px.pie(
            df,
            values="pop",
            names="country",
            title="Population of American continent",
            hover_data=["lifeExp"],
            labels={"lifeExp": "life expectancy"},
        )
        fig.update_traces(textposition="inside", textinfo="percent+label")
        st.plotly_chart(fig)
    with col2:
        fig = go.Figure(
            go.Sunburst(
                labels=[
                    "Eve",
                    "Cain",
                    "Seth",
                    "Enos",
                    "Noam",
                    "Abel",
                    "Awan",
                    "Enoch",
                    "Azura",
                ],
                parents=["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve"],
                values=[10, 14, 12, 10, 2, 6, 6, 4, 4],
            )
        )
        fig.update_layout(margin=dict(t=0, l=0, r=0, b=0))
        st.plotly_chart(fig)


if __name__ == "__main__":
    main()