Pranjal2041's picture
Initial demo
970a7a2
# coding: utf-8
__author__ = 'ZFTurbo: https://kaggle.com/zfturbo'
import numpy as np
from numba import jit
def prepare_boxes(boxes, scores, labels):
result_boxes = boxes.copy()
cond = (result_boxes < 0)
cond_sum = cond.astype(np.int32).sum()
if cond_sum > 0:
print('Warning. Fixed {} boxes coordinates < 0'.format(cond_sum))
result_boxes[cond] = 0
cond = (result_boxes > 1)
cond_sum = cond.astype(np.int32).sum()
if cond_sum > 0:
print('Warning. Fixed {} boxes coordinates > 1. Check that your boxes was normalized at [0, 1]'.format(cond_sum))
result_boxes[cond] = 1
boxes1 = result_boxes.copy()
result_boxes[:, 0] = np.min(boxes1[:, [0, 2]], axis=1)
result_boxes[:, 2] = np.max(boxes1[:, [0, 2]], axis=1)
result_boxes[:, 1] = np.min(boxes1[:, [1, 3]], axis=1)
result_boxes[:, 3] = np.max(boxes1[:, [1, 3]], axis=1)
area = (result_boxes[:, 2] - result_boxes[:, 0]) * (result_boxes[:, 3] - result_boxes[:, 1])
cond = (area == 0)
cond_sum = cond.astype(np.int32).sum()
if cond_sum > 0:
print('Warning. Removed {} boxes with zero area!'.format(cond_sum))
result_boxes = result_boxes[area > 0]
scores = scores[area > 0]
labels = labels[area > 0]
return result_boxes, scores, labels
def cpu_soft_nms_float(dets, sc, Nt, sigma, thresh, method):
"""
Based on: https://github.com/DocF/Soft-NMS/blob/master/soft_nms.py
It's different from original soft-NMS because we have float coordinates on range [0; 1]
:param dets: boxes format [x1, y1, x2, y2]
:param sc: scores for boxes
:param Nt: required iou
:param sigma:
:param thresh:
:param method: 1 - linear soft-NMS, 2 - gaussian soft-NMS, 3 - standard NMS
:return: index of boxes to keep
"""
# indexes concatenate boxes with the last column
N = dets.shape[0]
indexes = np.array([np.arange(N)])
dets = np.concatenate((dets, indexes.T), axis=1)
# the order of boxes coordinate is [y1, x1, y2, x2]
y1 = dets[:, 1]
x1 = dets[:, 0]
y2 = dets[:, 3]
x2 = dets[:, 2]
scores = sc
areas = (x2 - x1) * (y2 - y1)
for i in range(N):
# intermediate parameters for later parameters exchange
tBD = dets[i, :].copy()
tscore = scores[i].copy()
tarea = areas[i].copy()
pos = i + 1
#
if i != N - 1:
maxscore = np.max(scores[pos:], axis=0)
maxpos = np.argmax(scores[pos:], axis=0)
else:
maxscore = scores[-1]
maxpos = 0
if tscore < maxscore:
dets[i, :] = dets[maxpos + i + 1, :]
dets[maxpos + i + 1, :] = tBD
tBD = dets[i, :]
scores[i] = scores[maxpos + i + 1]
scores[maxpos + i + 1] = tscore
tscore = scores[i]
areas[i] = areas[maxpos + i + 1]
areas[maxpos + i + 1] = tarea
tarea = areas[i]
# IoU calculate
xx1 = np.maximum(dets[i, 1], dets[pos:, 1])
yy1 = np.maximum(dets[i, 0], dets[pos:, 0])
xx2 = np.minimum(dets[i, 3], dets[pos:, 3])
yy2 = np.minimum(dets[i, 2], dets[pos:, 2])
w = np.maximum(0.0, xx2 - xx1)
h = np.maximum(0.0, yy2 - yy1)
inter = w * h
ovr = inter / (areas[i] + areas[pos:] - inter)
# Three methods: 1.linear 2.gaussian 3.original NMS
if method == 1: # linear
weight = np.ones(ovr.shape)
weight[ovr > Nt] = weight[ovr > Nt] - ovr[ovr > Nt]
elif method == 2: # gaussian
weight = np.exp(-(ovr * ovr) / sigma)
else: # original NMS
weight = np.ones(ovr.shape)
weight[ovr > Nt] = 0
scores[pos:] = weight * scores[pos:]
# select the boxes and keep the corresponding indexes
inds = dets[:, 4][scores > thresh]
keep = inds.astype(int)
return keep
@jit(nopython=True)
def nms_float_fast(dets, scores, thresh):
"""
# It's different from original nms because we have float coordinates on range [0; 1]
:param dets: numpy array of boxes with shape: (N, 5). Order: x1, y1, x2, y2, score. All variables in range [0; 1]
:param thresh: IoU value for boxes
:return: index of boxes to keep
"""
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
areas = (x2 - x1) * (y2 - y1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1)
h = np.maximum(0.0, yy2 - yy1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
def nms_method(boxes, scores, labels, method=3, iou_thr=0.5, sigma=0.5, thresh=0.001, weights=None):
"""
:param boxes: list of boxes predictions from each model, each box is 4 numbers.
It has 3 dimensions (models_number, model_preds, 4)
Order of boxes: x1, y1, x2, y2. We expect float normalized coordinates [0; 1]
:param scores: list of scores for each model
:param labels: list of labels for each model
:param method: 1 - linear soft-NMS, 2 - gaussian soft-NMS, 3 - standard NMS
:param iou_thr: IoU value for boxes to be a match
:param sigma: Sigma value for SoftNMS
:param thresh: threshold for boxes to keep (important for SoftNMS)
:param weights: list of weights for each model. Default: None, which means weight == 1 for each model
:return: boxes: boxes coordinates (Order of boxes: x1, y1, x2, y2).
:return: scores: confidence scores
:return: labels: boxes labels
"""
# If weights are specified
if weights is not None:
if len(boxes) != len(weights):
print('Incorrect number of weights: {}. Must be: {}. Skip it'.format(len(weights), len(boxes)))
else:
weights = np.array(weights)
for i in range(len(weights)):
scores[i] = (np.array(scores[i]) * weights[i]) / weights.sum()
# We concatenate everything
boxes = np.concatenate(boxes)
scores = np.concatenate(scores)
labels = np.concatenate(labels)
# Fix coordinates and removed zero area boxes
boxes, scores, labels = prepare_boxes(boxes, scores, labels)
# Run NMS independently for each label
unique_labels = np.unique(labels)
final_boxes = []
final_scores = []
final_labels = []
for l in unique_labels:
condition = (labels == l)
boxes_by_label = boxes[condition]
scores_by_label = scores[condition]
labels_by_label = np.array([l] * len(boxes_by_label))
if method != 3:
keep = cpu_soft_nms_float(boxes_by_label.copy(), scores_by_label.copy(), Nt=iou_thr, sigma=sigma, thresh=thresh, method=method)
else:
# Use faster function
keep = nms_float_fast(boxes_by_label, scores_by_label, thresh=iou_thr)
final_boxes.append(boxes_by_label[keep])
final_scores.append(scores_by_label[keep])
final_labels.append(labels_by_label[keep])
final_boxes = np.concatenate(final_boxes)
final_scores = np.concatenate(final_scores)
final_labels = np.concatenate(final_labels)
return final_boxes, final_scores, final_labels
def nms(boxes, scores, labels, iou_thr=0.5, weights=None):
"""
Short call for standard NMS
:param boxes:
:param scores:
:param labels:
:param iou_thr:
:param weights:
:return:
"""
return nms_method(boxes, scores, labels, method=3, iou_thr=iou_thr, weights=weights)
def soft_nms(boxes, scores, labels, method=2, iou_thr=0.5, sigma=0.5, thresh=0.001, weights=None):
"""
Short call for Soft-NMS
:param boxes:
:param scores:
:param labels:
:param method:
:param iou_thr:
:param sigma:
:param thresh:
:param weights:
:return:
"""
return nms_method(boxes, scores, labels, method=method, iou_thr=iou_thr, sigma=sigma, thresh=thresh, weights=weights)