File size: 8,345 Bytes
970a7a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# coding: utf-8
__author__ = 'ZFTurbo: https://kaggle.com/zfturbo'

import numpy as np
from numba import jit


def prepare_boxes(boxes, scores, labels):
    result_boxes = boxes.copy()

    cond = (result_boxes < 0)
    cond_sum = cond.astype(np.int32).sum()
    if cond_sum > 0:
        print('Warning. Fixed {} boxes coordinates < 0'.format(cond_sum))
        result_boxes[cond] = 0

    cond = (result_boxes > 1)
    cond_sum = cond.astype(np.int32).sum()
    if cond_sum > 0:
        print('Warning. Fixed {} boxes coordinates > 1. Check that your boxes was normalized at [0, 1]'.format(cond_sum))
        result_boxes[cond] = 1

    boxes1 = result_boxes.copy()
    result_boxes[:, 0] = np.min(boxes1[:, [0, 2]], axis=1)
    result_boxes[:, 2] = np.max(boxes1[:, [0, 2]], axis=1)
    result_boxes[:, 1] = np.min(boxes1[:, [1, 3]], axis=1)
    result_boxes[:, 3] = np.max(boxes1[:, [1, 3]], axis=1)

    area = (result_boxes[:, 2] - result_boxes[:, 0]) * (result_boxes[:, 3] - result_boxes[:, 1])
    cond = (area == 0)
    cond_sum = cond.astype(np.int32).sum()
    if cond_sum > 0:
        print('Warning. Removed {} boxes with zero area!'.format(cond_sum))
        result_boxes = result_boxes[area > 0]
        scores = scores[area > 0]
        labels = labels[area > 0]

    return result_boxes, scores, labels


def cpu_soft_nms_float(dets, sc, Nt, sigma, thresh, method):
    """
    Based on: https://github.com/DocF/Soft-NMS/blob/master/soft_nms.py
    It's different from original soft-NMS because we have float coordinates on range [0; 1]

    :param dets:   boxes format [x1, y1, x2, y2]
    :param sc:     scores for boxes
    :param Nt:     required iou 
    :param sigma:  
    :param thresh: 
    :param method: 1 - linear soft-NMS, 2 - gaussian soft-NMS, 3 - standard NMS
    :return: index of boxes to keep
    """

    # indexes concatenate boxes with the last column
    N = dets.shape[0]
    indexes = np.array([np.arange(N)])
    dets = np.concatenate((dets, indexes.T), axis=1)

    # the order of boxes coordinate is [y1, x1, y2, x2]
    y1 = dets[:, 1]
    x1 = dets[:, 0]
    y2 = dets[:, 3]
    x2 = dets[:, 2]
    scores = sc
    areas = (x2 - x1) * (y2 - y1)

    for i in range(N):
        # intermediate parameters for later parameters exchange
        tBD = dets[i, :].copy()
        tscore = scores[i].copy()
        tarea = areas[i].copy()
        pos = i + 1

        #
        if i != N - 1:
            maxscore = np.max(scores[pos:], axis=0)
            maxpos = np.argmax(scores[pos:], axis=0)
        else:
            maxscore = scores[-1]
            maxpos = 0
        if tscore < maxscore:
            dets[i, :] = dets[maxpos + i + 1, :]
            dets[maxpos + i + 1, :] = tBD
            tBD = dets[i, :]

            scores[i] = scores[maxpos + i + 1]
            scores[maxpos + i + 1] = tscore
            tscore = scores[i]

            areas[i] = areas[maxpos + i + 1]
            areas[maxpos + i + 1] = tarea
            tarea = areas[i]

        # IoU calculate
        xx1 = np.maximum(dets[i, 1], dets[pos:, 1])
        yy1 = np.maximum(dets[i, 0], dets[pos:, 0])
        xx2 = np.minimum(dets[i, 3], dets[pos:, 3])
        yy2 = np.minimum(dets[i, 2], dets[pos:, 2])

        w = np.maximum(0.0, xx2 - xx1)
        h = np.maximum(0.0, yy2 - yy1)
        inter = w * h
        ovr = inter / (areas[i] + areas[pos:] - inter)

        # Three methods: 1.linear 2.gaussian 3.original NMS
        if method == 1:  # linear
            weight = np.ones(ovr.shape)
            weight[ovr > Nt] = weight[ovr > Nt] - ovr[ovr > Nt]
        elif method == 2:  # gaussian
            weight = np.exp(-(ovr * ovr) / sigma)
        else:  # original NMS
            weight = np.ones(ovr.shape)
            weight[ovr > Nt] = 0

        scores[pos:] = weight * scores[pos:]

    # select the boxes and keep the corresponding indexes
    inds = dets[:, 4][scores > thresh]
    keep = inds.astype(int)
    return keep


@jit(nopython=True)
def nms_float_fast(dets, scores, thresh):
    """
    # It's different from original nms because we have float coordinates on range [0; 1]
    :param dets: numpy array of boxes with shape: (N, 5). Order: x1, y1, x2, y2, score. All variables in range [0; 1]
    :param thresh: IoU value for boxes
    :return: index of boxes to keep
    """
    x1 = dets[:, 0]
    y1 = dets[:, 1]
    x2 = dets[:, 2]
    y2 = dets[:, 3]

    areas = (x2 - x1) * (y2 - y1)
    order = scores.argsort()[::-1]

    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])

        w = np.maximum(0.0, xx2 - xx1)
        h = np.maximum(0.0, yy2 - yy1)
        inter = w * h
        ovr = inter / (areas[i] + areas[order[1:]] - inter)
        inds = np.where(ovr <= thresh)[0]
        order = order[inds + 1]

    return keep


def nms_method(boxes, scores, labels, method=3, iou_thr=0.5, sigma=0.5, thresh=0.001, weights=None):
    """
    :param boxes: list of boxes predictions from each model, each box is 4 numbers. 
    It has 3 dimensions (models_number, model_preds, 4)
    Order of boxes: x1, y1, x2, y2. We expect float normalized coordinates [0; 1] 
    :param scores: list of scores for each model 
    :param labels: list of labels for each model
    :param method: 1 - linear soft-NMS, 2 - gaussian soft-NMS, 3 - standard NMS
    :param iou_thr: IoU value for boxes to be a match 
    :param sigma: Sigma value for SoftNMS
    :param thresh: threshold for boxes to keep (important for SoftNMS)
    :param weights: list of weights for each model. Default: None, which means weight == 1 for each model

    :return: boxes: boxes coordinates (Order of boxes: x1, y1, x2, y2). 
    :return: scores: confidence scores
    :return: labels: boxes labels
    """

    # If weights are specified
    if weights is not None:
        if len(boxes) != len(weights):
            print('Incorrect number of weights: {}. Must be: {}. Skip it'.format(len(weights), len(boxes)))
        else:
            weights = np.array(weights)
            for i in range(len(weights)):
                scores[i] = (np.array(scores[i]) * weights[i]) / weights.sum()

    # We concatenate everything
    boxes = np.concatenate(boxes)
    scores = np.concatenate(scores)
    labels = np.concatenate(labels)

    # Fix coordinates and removed zero area boxes
    boxes, scores, labels = prepare_boxes(boxes, scores, labels)

    # Run NMS independently for each label
    unique_labels = np.unique(labels)
    final_boxes = []
    final_scores = []
    final_labels = []
    for l in unique_labels:
        condition = (labels == l)
        boxes_by_label = boxes[condition]
        scores_by_label = scores[condition]
        labels_by_label = np.array([l] * len(boxes_by_label))

        if method != 3:
            keep = cpu_soft_nms_float(boxes_by_label.copy(), scores_by_label.copy(), Nt=iou_thr, sigma=sigma, thresh=thresh, method=method)
        else:
            # Use faster function
            keep = nms_float_fast(boxes_by_label, scores_by_label, thresh=iou_thr)

        final_boxes.append(boxes_by_label[keep])
        final_scores.append(scores_by_label[keep])
        final_labels.append(labels_by_label[keep])
    final_boxes = np.concatenate(final_boxes)
    final_scores = np.concatenate(final_scores)
    final_labels = np.concatenate(final_labels)

    return final_boxes, final_scores, final_labels


def nms(boxes, scores, labels, iou_thr=0.5, weights=None):
    """
    Short call for standard NMS 
    
    :param boxes: 
    :param scores: 
    :param labels: 
    :param iou_thr: 
    :param weights: 
    :return: 
    """
    return nms_method(boxes, scores, labels, method=3, iou_thr=iou_thr, weights=weights)


def soft_nms(boxes, scores, labels, method=2, iou_thr=0.5, sigma=0.5, thresh=0.001, weights=None):
    """
    Short call for Soft-NMS
     
    :param boxes: 
    :param scores: 
    :param labels: 
    :param method: 
    :param iou_thr: 
    :param sigma: 
    :param thresh: 
    :param weights: 
    :return: 
    """
    return nms_method(boxes, scores, labels, method=method, iou_thr=iou_thr, sigma=sigma, thresh=thresh, weights=weights)