Pranjal2041's picture
Initial demo
970a7a2
import math
import sys
import time
import torch
import torchvision.models.detection.mask_rcnn
import detection.utils as utils
from detection.coco_eval import CocoEvaluator
from detection.coco_utils import get_coco_api_from_dataset
from tqdm import tqdm
import numpy as np
sys.path.append("..")
from utils import AverageMeter
from advanced_logger import LogPriority
def train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq, scaler=None):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value:.6f}"))
header = f"Epoch: [{epoch}]"
lr_scheduler = None
if epoch == 0:
warmup_factor = 1.0 / 1000
warmup_iters = min(1000, len(data_loader) - 1)
lr_scheduler = torch.optim.lr_scheduler.LinearLR(
optimizer, start_factor=warmup_factor, total_iters=warmup_iters
)
#for batch_idx,(images, targets) in enumerate(tqdm(data_loader)):
for images, targets in metric_logger.log_every(data_loader, print_freq, header):
#print(images.shape)
images = list(image.to(device) if len(image)>2 else [image[0].to(device),image[1].to(device)] for image in images)
#print(len(images))
#print(images[0].shape)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
with torch.cuda.amp.autocast(enabled=scaler is not None):
loss_dict = model(images, targets)
losses = sum(loss for loss in loss_dict.values())
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
losses_reduced = sum(loss for loss in loss_dict_reduced.values())
loss_value = losses_reduced.item()
if not math.isfinite(loss_value):
print(f"Loss is {loss_value}, stopping training")
print(loss_dict_reduced)
sys.exit(1)
optimizer.zero_grad()
if scaler is not None:
scaler.scale(losses).backward()
scaler.step(optimizer)
scaler.update()
else:
losses.backward()
optimizer.step()
if lr_scheduler is not None:
lr_scheduler.step()
#if(batch_idx%20==0):
# print('epoch {} batch {} : {}'.format(epoch,batch_idx,losses_reduced))
metric_logger.update(loss=losses_reduced, **loss_dict_reduced)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
return metric_logger
def train_one_epoch_simplified(model, optimizer, data_loader, device, epoch, experimenter,optimizer_backbone=None):
model.train()
lr_scheduler = None
lr_scheduler_backbone = None
if epoch == 0:
warmup_factor = 1.0 / 1000
warmup_iters = min(1000, len(data_loader) - 1)
lr_scheduler = torch.optim.lr_scheduler.LinearLR(
optimizer, start_factor=warmup_factor, total_iters=warmup_iters
)
if(optimizer_backbone is not None):
lr_scheduler_backbone = torch.optim.lr_scheduler.LinearLR(optimizer_backbone, start_factor=warmup_factor, total_iters=warmup_iters)
loss_meter = AverageMeter()
for step, (images, targets) in enumerate(tqdm(data_loader)):
optimizer.zero_grad()
if(optimizer_backbone is not None):
optimizer_backbone.zero_grad()
images = list(image.to(device) if len(image)>2 else [image[0].to(device),image[1].to(device)] for image in images)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
loss_dict = model(images, targets)
losses = sum(loss for loss in loss_dict.values())
if not math.isfinite(losses.item()):
print(f"Loss is {losses.item()}, stopping training")
print(loss_dict)
experimenter.log(f"Loss is {losses.item()}, stopping training")
sys.exit(1)
losses.backward()
loss_meter.update(losses.item())
optimizer.step()
if optimizer_backbone is not None:
optimizer_backbone.step()
if lr_scheduler is not None:
lr_scheduler.step()
if lr_scheduler_backbone is not None:
lr_scheduler_backbone.step()
if (step+1)%10 == 0:
experimenter.log('Loss after {} steps: {}'.format(step+1, loss_meter.avg))
if epoch == 0 and (step+1)%50 == 0:
experimenter.log('LR after {} steps: {}'.format(step+1, optimizer.param_groups[0]['lr']))
def _get_iou_types(model):
model_without_ddp = model
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
model_without_ddp = model.module
iou_types = ["bbox"]
if isinstance(model_without_ddp, torchvision.models.detection.MaskRCNN):
iou_types.append("segm")
if isinstance(model_without_ddp, torchvision.models.detection.KeypointRCNN):
iou_types.append("keypoints")
return iou_types
@torch.inference_mode()
def evaluate(model, data_loader, device):
n_threads = torch.get_num_threads()
# FIXME remove this and make paste_masks_in_image run on the GPU
torch.set_num_threads(1)
cpu_device = torch.device("cpu")
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = "Test:"
coco = get_coco_api_from_dataset(data_loader.dataset)
iou_types = _get_iou_types(model)
coco_evaluator = CocoEvaluator(coco, iou_types)
for images, targets in metric_logger.log_every(data_loader, 100, header):
images = list(img.to(device) for img in images)
if torch.cuda.is_available():
torch.cuda.synchronize()
model_time = time.time()
outputs = model(images)
outputs = [{k: v.to(cpu_device) for k, v in t.items()} for t in outputs]
model_time = time.time() - model_time
res = {target["image_id"].item(): output for target, output in zip(targets, outputs)}
evaluator_time = time.time()
coco_evaluator.update(res)
evaluator_time = time.time() - evaluator_time
metric_logger.update(model_time=model_time, evaluator_time=evaluator_time)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
coco_evaluator.synchronize_between_processes()
# accumulate predictions from all images
coco_evaluator.accumulate()
coco_evaluator.summarize()
torch.set_num_threads(n_threads)
return coco_evaluator
def coco_summ(coco_eval, experimenter):
self = coco_eval
def _summarize( ap=1, iouThr=None, areaRng='all', maxDets=100 ):
p = self.params
iStr = ' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}'
titleStr = 'Average Precision' if ap == 1 else 'Average Recall'
typeStr = '(AP)' if ap==1 else '(AR)'
iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) \
if iouThr is None else '{:0.2f}'.format(iouThr)
aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng]
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
if ap == 1:
# dimension of precision: [TxRxKxAxM]
s = self.eval['precision']
# IoU
if iouThr is not None:
t = np.where(iouThr == p.iouThrs)[0]
s = s[t]
s = s[:,:,:,aind,mind]
else:
# dimension of recall: [TxKxAxM]
s = self.eval['recall']
if iouThr is not None:
t = np.where(iouThr == p.iouThrs)[0]
s = s[t]
s = s[:,:,aind,mind]
if len(s[s>-1])==0:
mean_s = -1
else:
mean_s = np.mean(s[s>-1])
experimenter.log(iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s), priority = LogPriority.MEDIUM)
return mean_s
def _summarizeDets():
stats = np.zeros((12,))
stats[0] = _summarize(1)
stats[1] = _summarize(1, iouThr=.5, maxDets=self.params.maxDets[2])
stats[2] = _summarize(1, iouThr=.75, maxDets=self.params.maxDets[2])
stats[3] = _summarize(1, areaRng='small', maxDets=self.params.maxDets[2])
stats[4] = _summarize(1, areaRng='medium', maxDets=self.params.maxDets[2])
stats[5] = _summarize(1, areaRng='large', maxDets=self.params.maxDets[2])
stats[6] = _summarize(0, maxDets=self.params.maxDets[0])
stats[7] = _summarize(0, maxDets=self.params.maxDets[1])
stats[8] = _summarize(0, maxDets=self.params.maxDets[2])
stats[9] = _summarize(0, areaRng='small', maxDets=self.params.maxDets[2])
stats[10] = _summarize(0, areaRng='medium', maxDets=self.params.maxDets[2])
stats[11] = _summarize(0, areaRng='large', maxDets=self.params.maxDets[2])
return stats
_summarizeDets()
@torch.inference_mode()
def evaluate_simplified(model, data_loader, device, experimenter):
cpu_device = torch.device("cpu")
model.eval()
experimenter.log('Evaluating Validation Parameters')
coco = get_coco_api_from_dataset(data_loader.dataset)
iou_types = _get_iou_types(model)
coco_evaluator = CocoEvaluator(coco, iou_types)
for images, targets in data_loader:
images = list(img.to(device) for img in images)
if torch.cuda.is_available():
torch.cuda.synchronize()
outputs = model(images)
outputs = [{k: v.to(cpu_device) for k, v in t.items()} for t in outputs]
res = {target["image_id"].item(): output for target, output in zip(targets, outputs)}
coco_evaluator.update(res)
# gather the stats from all processes
coco_evaluator.synchronize_between_processes()
# accumulate predictions from all images
coco_evaluator.accumulate()
# Debug and see what all info it has
# coco_evaluator.summarize()
for iou_type, coco_eval in coco_evaluator.coco_eval.items():
print(f"IoU metric: {iou_type}")
coco_summ(coco_eval, experimenter)
return coco_evaluator
def evaluate_loss(model, device, val_loader, experimenter=None):
model.train()
#experimenter.log('Evaluating Validation Loss')
with torch.no_grad():
loss_meter = AverageMeter()
for images, targets in tqdm(val_loader):
images = list(image.to(device) if len(image)>2 else [image[0].to(device),image[1].to(device)] for image in images)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
loss_dict = model(images, targets)
losses = sum(loss for loss in loss_dict.values())
loss_meter.update(losses.item())
return loss_meter.avg