File size: 10,758 Bytes
970a7a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import math
import sys
import time

import torch
import torchvision.models.detection.mask_rcnn
import detection.utils as utils
from detection.coco_eval import CocoEvaluator
from detection.coco_utils import get_coco_api_from_dataset
from tqdm import tqdm
import numpy as np


sys.path.append("..")
from utils import AverageMeter
from advanced_logger import LogPriority

def train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq, scaler=None):
    model.train()
    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value:.6f}"))
    header = f"Epoch: [{epoch}]"

    lr_scheduler = None
    if epoch == 0:
        warmup_factor = 1.0 / 1000
        warmup_iters = min(1000, len(data_loader) - 1)

        lr_scheduler = torch.optim.lr_scheduler.LinearLR(
            optimizer, start_factor=warmup_factor, total_iters=warmup_iters
        )
    #for batch_idx,(images, targets) in enumerate(tqdm(data_loader)):
    for images, targets in metric_logger.log_every(data_loader, print_freq, header):
        #print(images.shape)
        images = list(image.to(device) if len(image)>2 else [image[0].to(device),image[1].to(device)] for image in images)
        #print(len(images))
        #print(images[0].shape)
        targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
        with torch.cuda.amp.autocast(enabled=scaler is not None):
            loss_dict = model(images, targets)
            losses = sum(loss for loss in loss_dict.values())

        # reduce losses over all GPUs for logging purposes
        loss_dict_reduced = utils.reduce_dict(loss_dict)
        losses_reduced = sum(loss for loss in loss_dict_reduced.values())

        loss_value = losses_reduced.item()

        if not math.isfinite(loss_value):
            print(f"Loss is {loss_value}, stopping training")
            print(loss_dict_reduced)
            sys.exit(1)

        optimizer.zero_grad()
        if scaler is not None:
            scaler.scale(losses).backward()
            scaler.step(optimizer)
            scaler.update()
        else:
            losses.backward()
            optimizer.step()

        if lr_scheduler is not None:
            lr_scheduler.step()
        
        #if(batch_idx%20==0):
        #    print('epoch {} batch {} : {}'.format(epoch,batch_idx,losses_reduced))

        metric_logger.update(loss=losses_reduced, **loss_dict_reduced)
        metric_logger.update(lr=optimizer.param_groups[0]["lr"])

    return metric_logger


def train_one_epoch_simplified(model, optimizer, data_loader, device, epoch, experimenter,optimizer_backbone=None):
    
    model.train()
    lr_scheduler = None
    lr_scheduler_backbone = None
    if epoch == 0:
        warmup_factor = 1.0 / 1000
        warmup_iters = min(1000, len(data_loader) - 1)

        lr_scheduler = torch.optim.lr_scheduler.LinearLR(
            optimizer, start_factor=warmup_factor, total_iters=warmup_iters
        )
        if(optimizer_backbone is not None):
           lr_scheduler_backbone = torch.optim.lr_scheduler.LinearLR(optimizer_backbone, start_factor=warmup_factor, total_iters=warmup_iters)
           

    loss_meter = AverageMeter()

    for step, (images, targets) in enumerate(tqdm(data_loader)):

        optimizer.zero_grad()
        if(optimizer_backbone is not None):
            optimizer_backbone.zero_grad()

        images = list(image.to(device) if len(image)>2 else [image[0].to(device),image[1].to(device)] for image in images)
        targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
        loss_dict = model(images, targets)
        losses = sum(loss for loss in loss_dict.values())


        if not math.isfinite(losses.item()):
            print(f"Loss is {losses.item()}, stopping training")
            print(loss_dict)
            experimenter.log(f"Loss is {losses.item()}, stopping training")
            sys.exit(1)

        losses.backward()
        loss_meter.update(losses.item())
        optimizer.step()
        if optimizer_backbone is not None:
            optimizer_backbone.step()
        if lr_scheduler is not None:
            lr_scheduler.step()
        if lr_scheduler_backbone is not None:
            lr_scheduler_backbone.step()
            
        if (step+1)%10 == 0:
            experimenter.log('Loss after {} steps: {}'.format(step+1, loss_meter.avg))
        if epoch == 0 and (step+1)%50 == 0:
            experimenter.log('LR after {} steps: {}'.format(step+1, optimizer.param_groups[0]['lr']))

def _get_iou_types(model):
    model_without_ddp = model
    if isinstance(model, torch.nn.parallel.DistributedDataParallel):
        model_without_ddp = model.module
    iou_types = ["bbox"]
    if isinstance(model_without_ddp, torchvision.models.detection.MaskRCNN):
        iou_types.append("segm")
    if isinstance(model_without_ddp, torchvision.models.detection.KeypointRCNN):
        iou_types.append("keypoints")
    return iou_types


@torch.inference_mode()
def evaluate(model, data_loader, device):
    n_threads = torch.get_num_threads()
    # FIXME remove this and make paste_masks_in_image run on the GPU
    torch.set_num_threads(1)
    cpu_device = torch.device("cpu")
    model.eval()
    metric_logger = utils.MetricLogger(delimiter="  ")
    header = "Test:"

    coco = get_coco_api_from_dataset(data_loader.dataset)
    iou_types = _get_iou_types(model)
    coco_evaluator = CocoEvaluator(coco, iou_types)

    for images, targets in metric_logger.log_every(data_loader, 100, header):
        images = list(img.to(device) for img in images)

        if torch.cuda.is_available():
            torch.cuda.synchronize()
        model_time = time.time()
        outputs = model(images)

        outputs = [{k: v.to(cpu_device) for k, v in t.items()} for t in outputs]
        model_time = time.time() - model_time

        res = {target["image_id"].item(): output for target, output in zip(targets, outputs)}
        evaluator_time = time.time()
        coco_evaluator.update(res)
        evaluator_time = time.time() - evaluator_time
        metric_logger.update(model_time=model_time, evaluator_time=evaluator_time)

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger)
    coco_evaluator.synchronize_between_processes()

    # accumulate predictions from all images
    coco_evaluator.accumulate()
    coco_evaluator.summarize()
    torch.set_num_threads(n_threads)
    return coco_evaluator


def coco_summ(coco_eval, experimenter):
    self = coco_eval
    def _summarize( ap=1, iouThr=None, areaRng='all', maxDets=100 ):
        p = self.params
        iStr = ' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}'
        titleStr = 'Average Precision' if ap == 1 else 'Average Recall'
        typeStr = '(AP)' if ap==1 else '(AR)'
        iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) \
            if iouThr is None else '{:0.2f}'.format(iouThr)

        aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng]
        mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
        if ap == 1:
            # dimension of precision: [TxRxKxAxM]
            s = self.eval['precision']
            # IoU
            if iouThr is not None:
                t = np.where(iouThr == p.iouThrs)[0]
                s = s[t]
            s = s[:,:,:,aind,mind]
        else:
            # dimension of recall: [TxKxAxM]
            s = self.eval['recall']
            if iouThr is not None:
                t = np.where(iouThr == p.iouThrs)[0]
                s = s[t]
            s = s[:,:,aind,mind]
        if len(s[s>-1])==0:
            mean_s = -1
        else:
            mean_s = np.mean(s[s>-1])
        experimenter.log(iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s), priority = LogPriority.MEDIUM)
        return mean_s
    def _summarizeDets():
        stats = np.zeros((12,))
        stats[0] = _summarize(1)
        stats[1] = _summarize(1, iouThr=.5, maxDets=self.params.maxDets[2])
        stats[2] = _summarize(1, iouThr=.75, maxDets=self.params.maxDets[2])
        stats[3] = _summarize(1, areaRng='small', maxDets=self.params.maxDets[2])
        stats[4] = _summarize(1, areaRng='medium', maxDets=self.params.maxDets[2])
        stats[5] = _summarize(1, areaRng='large', maxDets=self.params.maxDets[2])
        stats[6] = _summarize(0, maxDets=self.params.maxDets[0])
        stats[7] = _summarize(0, maxDets=self.params.maxDets[1])
        stats[8] = _summarize(0, maxDets=self.params.maxDets[2])
        stats[9] = _summarize(0, areaRng='small', maxDets=self.params.maxDets[2])
        stats[10] = _summarize(0, areaRng='medium', maxDets=self.params.maxDets[2])
        stats[11] = _summarize(0, areaRng='large', maxDets=self.params.maxDets[2])
        return stats
    _summarizeDets()

@torch.inference_mode()
def evaluate_simplified(model, data_loader, device, experimenter):
    cpu_device = torch.device("cpu")
    model.eval()
    experimenter.log('Evaluating Validation Parameters')

    coco = get_coco_api_from_dataset(data_loader.dataset)
    iou_types = _get_iou_types(model)
    coco_evaluator = CocoEvaluator(coco, iou_types)

    for images, targets in data_loader:
        images = list(img.to(device) for img in images)

        if torch.cuda.is_available():
            torch.cuda.synchronize()
        outputs = model(images)
        outputs = [{k: v.to(cpu_device) for k, v in t.items()} for t in outputs]
        res = {target["image_id"].item(): output for target, output in zip(targets, outputs)}
        coco_evaluator.update(res)
        
    # gather the stats from all processes
    coco_evaluator.synchronize_between_processes()

    # accumulate predictions from all images
    coco_evaluator.accumulate()

    # Debug and see what all info it has
    # coco_evaluator.summarize()
    for iou_type, coco_eval in coco_evaluator.coco_eval.items():
        print(f"IoU metric: {iou_type}")
        coco_summ(coco_eval, experimenter)

    return coco_evaluator

def evaluate_loss(model, device, val_loader, experimenter=None):
    model.train()
    #experimenter.log('Evaluating Validation Loss')
    with torch.no_grad():
         loss_meter = AverageMeter()
    for images, targets in tqdm(val_loader):
        images = list(image.to(device) if len(image)>2 else [image[0].to(device),image[1].to(device)] for image in images)
        targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
        loss_dict = model(images, targets)
        losses = sum(loss for loss in loss_dict.values())
        loss_meter.update(losses.item())
    return loss_meter.avg