File size: 10,758 Bytes
970a7a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import math
import sys
import time
import torch
import torchvision.models.detection.mask_rcnn
import detection.utils as utils
from detection.coco_eval import CocoEvaluator
from detection.coco_utils import get_coco_api_from_dataset
from tqdm import tqdm
import numpy as np
sys.path.append("..")
from utils import AverageMeter
from advanced_logger import LogPriority
def train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq, scaler=None):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value:.6f}"))
header = f"Epoch: [{epoch}]"
lr_scheduler = None
if epoch == 0:
warmup_factor = 1.0 / 1000
warmup_iters = min(1000, len(data_loader) - 1)
lr_scheduler = torch.optim.lr_scheduler.LinearLR(
optimizer, start_factor=warmup_factor, total_iters=warmup_iters
)
#for batch_idx,(images, targets) in enumerate(tqdm(data_loader)):
for images, targets in metric_logger.log_every(data_loader, print_freq, header):
#print(images.shape)
images = list(image.to(device) if len(image)>2 else [image[0].to(device),image[1].to(device)] for image in images)
#print(len(images))
#print(images[0].shape)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
with torch.cuda.amp.autocast(enabled=scaler is not None):
loss_dict = model(images, targets)
losses = sum(loss for loss in loss_dict.values())
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = utils.reduce_dict(loss_dict)
losses_reduced = sum(loss for loss in loss_dict_reduced.values())
loss_value = losses_reduced.item()
if not math.isfinite(loss_value):
print(f"Loss is {loss_value}, stopping training")
print(loss_dict_reduced)
sys.exit(1)
optimizer.zero_grad()
if scaler is not None:
scaler.scale(losses).backward()
scaler.step(optimizer)
scaler.update()
else:
losses.backward()
optimizer.step()
if lr_scheduler is not None:
lr_scheduler.step()
#if(batch_idx%20==0):
# print('epoch {} batch {} : {}'.format(epoch,batch_idx,losses_reduced))
metric_logger.update(loss=losses_reduced, **loss_dict_reduced)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
return metric_logger
def train_one_epoch_simplified(model, optimizer, data_loader, device, epoch, experimenter,optimizer_backbone=None):
model.train()
lr_scheduler = None
lr_scheduler_backbone = None
if epoch == 0:
warmup_factor = 1.0 / 1000
warmup_iters = min(1000, len(data_loader) - 1)
lr_scheduler = torch.optim.lr_scheduler.LinearLR(
optimizer, start_factor=warmup_factor, total_iters=warmup_iters
)
if(optimizer_backbone is not None):
lr_scheduler_backbone = torch.optim.lr_scheduler.LinearLR(optimizer_backbone, start_factor=warmup_factor, total_iters=warmup_iters)
loss_meter = AverageMeter()
for step, (images, targets) in enumerate(tqdm(data_loader)):
optimizer.zero_grad()
if(optimizer_backbone is not None):
optimizer_backbone.zero_grad()
images = list(image.to(device) if len(image)>2 else [image[0].to(device),image[1].to(device)] for image in images)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
loss_dict = model(images, targets)
losses = sum(loss for loss in loss_dict.values())
if not math.isfinite(losses.item()):
print(f"Loss is {losses.item()}, stopping training")
print(loss_dict)
experimenter.log(f"Loss is {losses.item()}, stopping training")
sys.exit(1)
losses.backward()
loss_meter.update(losses.item())
optimizer.step()
if optimizer_backbone is not None:
optimizer_backbone.step()
if lr_scheduler is not None:
lr_scheduler.step()
if lr_scheduler_backbone is not None:
lr_scheduler_backbone.step()
if (step+1)%10 == 0:
experimenter.log('Loss after {} steps: {}'.format(step+1, loss_meter.avg))
if epoch == 0 and (step+1)%50 == 0:
experimenter.log('LR after {} steps: {}'.format(step+1, optimizer.param_groups[0]['lr']))
def _get_iou_types(model):
model_without_ddp = model
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
model_without_ddp = model.module
iou_types = ["bbox"]
if isinstance(model_without_ddp, torchvision.models.detection.MaskRCNN):
iou_types.append("segm")
if isinstance(model_without_ddp, torchvision.models.detection.KeypointRCNN):
iou_types.append("keypoints")
return iou_types
@torch.inference_mode()
def evaluate(model, data_loader, device):
n_threads = torch.get_num_threads()
# FIXME remove this and make paste_masks_in_image run on the GPU
torch.set_num_threads(1)
cpu_device = torch.device("cpu")
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = "Test:"
coco = get_coco_api_from_dataset(data_loader.dataset)
iou_types = _get_iou_types(model)
coco_evaluator = CocoEvaluator(coco, iou_types)
for images, targets in metric_logger.log_every(data_loader, 100, header):
images = list(img.to(device) for img in images)
if torch.cuda.is_available():
torch.cuda.synchronize()
model_time = time.time()
outputs = model(images)
outputs = [{k: v.to(cpu_device) for k, v in t.items()} for t in outputs]
model_time = time.time() - model_time
res = {target["image_id"].item(): output for target, output in zip(targets, outputs)}
evaluator_time = time.time()
coco_evaluator.update(res)
evaluator_time = time.time() - evaluator_time
metric_logger.update(model_time=model_time, evaluator_time=evaluator_time)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
coco_evaluator.synchronize_between_processes()
# accumulate predictions from all images
coco_evaluator.accumulate()
coco_evaluator.summarize()
torch.set_num_threads(n_threads)
return coco_evaluator
def coco_summ(coco_eval, experimenter):
self = coco_eval
def _summarize( ap=1, iouThr=None, areaRng='all', maxDets=100 ):
p = self.params
iStr = ' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}'
titleStr = 'Average Precision' if ap == 1 else 'Average Recall'
typeStr = '(AP)' if ap==1 else '(AR)'
iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) \
if iouThr is None else '{:0.2f}'.format(iouThr)
aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng]
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
if ap == 1:
# dimension of precision: [TxRxKxAxM]
s = self.eval['precision']
# IoU
if iouThr is not None:
t = np.where(iouThr == p.iouThrs)[0]
s = s[t]
s = s[:,:,:,aind,mind]
else:
# dimension of recall: [TxKxAxM]
s = self.eval['recall']
if iouThr is not None:
t = np.where(iouThr == p.iouThrs)[0]
s = s[t]
s = s[:,:,aind,mind]
if len(s[s>-1])==0:
mean_s = -1
else:
mean_s = np.mean(s[s>-1])
experimenter.log(iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s), priority = LogPriority.MEDIUM)
return mean_s
def _summarizeDets():
stats = np.zeros((12,))
stats[0] = _summarize(1)
stats[1] = _summarize(1, iouThr=.5, maxDets=self.params.maxDets[2])
stats[2] = _summarize(1, iouThr=.75, maxDets=self.params.maxDets[2])
stats[3] = _summarize(1, areaRng='small', maxDets=self.params.maxDets[2])
stats[4] = _summarize(1, areaRng='medium', maxDets=self.params.maxDets[2])
stats[5] = _summarize(1, areaRng='large', maxDets=self.params.maxDets[2])
stats[6] = _summarize(0, maxDets=self.params.maxDets[0])
stats[7] = _summarize(0, maxDets=self.params.maxDets[1])
stats[8] = _summarize(0, maxDets=self.params.maxDets[2])
stats[9] = _summarize(0, areaRng='small', maxDets=self.params.maxDets[2])
stats[10] = _summarize(0, areaRng='medium', maxDets=self.params.maxDets[2])
stats[11] = _summarize(0, areaRng='large', maxDets=self.params.maxDets[2])
return stats
_summarizeDets()
@torch.inference_mode()
def evaluate_simplified(model, data_loader, device, experimenter):
cpu_device = torch.device("cpu")
model.eval()
experimenter.log('Evaluating Validation Parameters')
coco = get_coco_api_from_dataset(data_loader.dataset)
iou_types = _get_iou_types(model)
coco_evaluator = CocoEvaluator(coco, iou_types)
for images, targets in data_loader:
images = list(img.to(device) for img in images)
if torch.cuda.is_available():
torch.cuda.synchronize()
outputs = model(images)
outputs = [{k: v.to(cpu_device) for k, v in t.items()} for t in outputs]
res = {target["image_id"].item(): output for target, output in zip(targets, outputs)}
coco_evaluator.update(res)
# gather the stats from all processes
coco_evaluator.synchronize_between_processes()
# accumulate predictions from all images
coco_evaluator.accumulate()
# Debug and see what all info it has
# coco_evaluator.summarize()
for iou_type, coco_eval in coco_evaluator.coco_eval.items():
print(f"IoU metric: {iou_type}")
coco_summ(coco_eval, experimenter)
return coco_evaluator
def evaluate_loss(model, device, val_loader, experimenter=None):
model.train()
#experimenter.log('Evaluating Validation Loss')
with torch.no_grad():
loss_meter = AverageMeter()
for images, targets in tqdm(val_loader):
images = list(image.to(device) if len(image)>2 else [image[0].to(device),image[1].to(device)] for image in images)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
loss_dict = model(images, targets)
losses = sum(loss for loss in loss_dict.values())
loss_meter.update(losses.item())
return loss_meter.avg |