|
# Object detection reference training scripts |
|
|
|
This folder contains reference training scripts for object detection. |
|
They serve as a log of how to train specific models, to provide baseline |
|
training and evaluation scripts to quickly bootstrap research. |
|
|
|
To execute the example commands below you must install the following: |
|
|
|
``` |
|
cython |
|
pycocotools |
|
matplotlib |
|
``` |
|
|
|
You must modify the following flags: |
|
|
|
`--data-path=/path/to/coco/dataset` |
|
|
|
`--nproc_per_node=<number_of_gpus_available>` |
|
|
|
Except otherwise noted, all models have been trained on 8x V100 GPUs. |
|
|
|
### Faster R-CNN ResNet-50 FPN |
|
``` |
|
torchrun --nproc_per_node=8 train.py\ |
|
--dataset coco --model fasterrcnn_resnet50_fpn --epochs 26\ |
|
--lr-steps 16 22 --aspect-ratio-group-factor 3 |
|
``` |
|
|
|
### Faster R-CNN MobileNetV3-Large FPN |
|
``` |
|
torchrun --nproc_per_node=8 train.py\ |
|
--dataset coco --model fasterrcnn_mobilenet_v3_large_fpn --epochs 26\ |
|
--lr-steps 16 22 --aspect-ratio-group-factor 3 |
|
``` |
|
|
|
### Faster R-CNN MobileNetV3-Large 320 FPN |
|
``` |
|
torchrun --nproc_per_node=8 train.py\ |
|
--dataset coco --model fasterrcnn_mobilenet_v3_large_320_fpn --epochs 26\ |
|
--lr-steps 16 22 --aspect-ratio-group-factor 3 |
|
``` |
|
|
|
### RetinaNet |
|
``` |
|
torchrun --nproc_per_node=8 train.py\ |
|
--dataset coco --model retinanet_resnet50_fpn --epochs 26\ |
|
--lr-steps 16 22 --aspect-ratio-group-factor 3 --lr 0.01 |
|
``` |
|
|
|
### SSD300 VGG16 |
|
``` |
|
torchrun --nproc_per_node=8 train.py\ |
|
--dataset coco --model ssd300_vgg16 --epochs 120\ |
|
--lr-steps 80 110 --aspect-ratio-group-factor 3 --lr 0.002 --batch-size 4\ |
|
--weight-decay 0.0005 --data-augmentation ssd |
|
``` |
|
|
|
### SSDlite320 MobileNetV3-Large |
|
``` |
|
torchrun --nproc_per_node=8 train.py\ |
|
--dataset coco --model ssdlite320_mobilenet_v3_large --epochs 660\ |
|
--aspect-ratio-group-factor 3 --lr-scheduler cosineannealinglr --lr 0.15 --batch-size 24\ |
|
--weight-decay 0.00004 --data-augmentation ssdlite |
|
``` |
|
|
|
|
|
### Mask R-CNN |
|
``` |
|
torchrun --nproc_per_node=8 train.py\ |
|
--dataset coco --model maskrcnn_resnet50_fpn --epochs 26\ |
|
--lr-steps 16 22 --aspect-ratio-group-factor 3 |
|
``` |
|
|
|
|
|
### Keypoint R-CNN |
|
``` |
|
torchrun --nproc_per_node=8 train.py\ |
|
--dataset coco_kp --model keypointrcnn_resnet50_fpn --epochs 46\ |
|
--lr-steps 36 43 --aspect-ratio-group-factor 3 |
|
``` |
|
|