Plsek commited on
Commit
bb1bb6a
·
1 Parent(s): 00d6ae6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -8
app.py CHANGED
@@ -117,15 +117,12 @@ if uploaded_file is not None:
117
  col5.subheader("Decomposed")
118
 
119
  with col1:
120
- st.markdown("""<style>[data-baseweb="select"] {margin-top: -26px;}</style>""", unsafe_allow_html=True)
121
  max_scale = int(data.shape[0] // 128)
122
- # scale = int(st.selectbox('Scale:',[i+1 for i in range(max_scale)], label_visibility="hidden"))
123
  scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden")
124
  scale = int(scale.split("x")[0]) // 128
125
- st.markdown("""<style>[data-baseweb="select"] {margin-top: 30px;}</style>""", unsafe_allow_html=True)
126
 
127
  with col3:
128
- # st.markdown("""<style>[data-baseweb="select"] {margin-top: 16px;}</style>""", unsafe_allow_html=True)
129
  detect = st.button('Detect')
130
 
131
  with col5:
@@ -137,11 +134,11 @@ if uploaded_file is not None:
137
  image = np.log10(data+1)
138
  plot_image(image, scale)
139
 
140
- with col3:
141
  st.markdown("""<style>[data-baseweb="select"] {margin-top: -36px;}</style>""", unsafe_allow_html=True)
142
  threshold = st.slider("", 0.0, 1.0, 0.0, 0.05, label_visibility="hidden")
143
 
144
- if detect or bool(threshold):
145
  data, wcs = cut(data, wcs, scale=scale)
146
  image = np.log10(data+1)
147
 
@@ -152,9 +149,11 @@ if uploaded_file is not None:
152
  pred = np.rot90(pred, -j)
153
  y_pred += pred / 4
154
 
155
- y_pred = np.where(y_pred > threshold, y_pred, 0)
 
 
156
 
157
- plot_prediction(y_pred)
158
 
159
  with colC:
160
  st.markdown("""<style>[data-baseweb="select"] {margin-top: -36px;}</style>""", unsafe_allow_html=True)
 
117
  col5.subheader("Decomposed")
118
 
119
  with col1:
120
+ # st.markdown("""<style>[data-baseweb="select"] {margin-top: -26px;}</style>""", unsafe_allow_html=True)
121
  max_scale = int(data.shape[0] // 128)
 
122
  scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden")
123
  scale = int(scale.split("x")[0]) // 128
 
124
 
125
  with col3:
 
126
  detect = st.button('Detect')
127
 
128
  with col5:
 
134
  image = np.log10(data+1)
135
  plot_image(image, scale)
136
 
137
+ with col4:
138
  st.markdown("""<style>[data-baseweb="select"] {margin-top: -36px;}</style>""", unsafe_allow_html=True)
139
  threshold = st.slider("", 0.0, 1.0, 0.0, 0.05, label_visibility="hidden")
140
 
141
+ if detect:
142
  data, wcs = cut(data, wcs, scale=scale)
143
  image = np.log10(data+1)
144
 
 
149
  pred = np.rot90(pred, -j)
150
  y_pred += pred / 4
151
 
152
+ if detect or bool(threshold):
153
+
154
+ pred = np.where(y_pred > threshold, y_pred, 0)
155
 
156
+ plot_prediction(pred)
157
 
158
  with colC:
159
  st.markdown("""<style>[data-baseweb="select"] {margin-top: -36px;}</style>""", unsafe_allow_html=True)