Update app.py
Browse files
app.py
CHANGED
@@ -122,7 +122,7 @@ if uploaded_file is not None:
|
|
122 |
# scale = int(st.selectbox('Scale:',[i+1 for i in range(max_scale)], label_visibility="hidden"))
|
123 |
scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden")
|
124 |
scale = int(scale.split("x")[0]) // 128
|
125 |
-
st.markdown("""<style>[data-baseweb="select"] {margin-top:
|
126 |
|
127 |
with col3:
|
128 |
# st.markdown("""<style>[data-baseweb="select"] {margin-top: 16px;}</style>""", unsafe_allow_html=True)
|
@@ -136,8 +136,12 @@ if uploaded_file is not None:
|
|
136 |
|
137 |
image = np.log10(data+1)
|
138 |
plot_image(image, scale)
|
|
|
|
|
|
|
|
|
139 |
|
140 |
-
if detect:
|
141 |
data, wcs = cut(data, wcs, scale=scale)
|
142 |
image = np.log10(data+1)
|
143 |
|
@@ -148,13 +152,8 @@ if uploaded_file is not None:
|
|
148 |
pred = np.rot90(pred, -j)
|
149 |
y_pred += pred / 4
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
threshold = st.slider("", 0.0, 1.0, 0.0, 0.05, label_visibility="hidden")
|
154 |
-
if threshold > 0: detect = True
|
155 |
-
y_pred = np.where(y_pred > threshold, y_pred, 0)
|
156 |
-
# plot_prediction(y_pred)
|
157 |
-
|
158 |
plot_prediction(y_pred)
|
159 |
|
160 |
with colC:
|
|
|
122 |
# scale = int(st.selectbox('Scale:',[i+1 for i in range(max_scale)], label_visibility="hidden"))
|
123 |
scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden")
|
124 |
scale = int(scale.split("x")[0]) // 128
|
125 |
+
st.markdown("""<style>[data-baseweb="select"] {margin-top: 30px;}</style>""", unsafe_allow_html=True)
|
126 |
|
127 |
with col3:
|
128 |
# st.markdown("""<style>[data-baseweb="select"] {margin-top: 16px;}</style>""", unsafe_allow_html=True)
|
|
|
136 |
|
137 |
image = np.log10(data+1)
|
138 |
plot_image(image, scale)
|
139 |
+
|
140 |
+
with col3:
|
141 |
+
st.markdown("""<style>[data-baseweb="select"] {margin-top: -36px;}</style>""", unsafe_allow_html=True)
|
142 |
+
threshold = st.slider("", 0.0, 1.0, 0.0, 0.05, label_visibility="hidden")
|
143 |
|
144 |
+
if detect or bool(threshold):
|
145 |
data, wcs = cut(data, wcs, scale=scale)
|
146 |
image = np.log10(data+1)
|
147 |
|
|
|
152 |
pred = np.rot90(pred, -j)
|
153 |
y_pred += pred / 4
|
154 |
|
155 |
+
y_pred = np.where(y_pred > threshold, y_pred, 0)
|
156 |
+
|
|
|
|
|
|
|
|
|
|
|
157 |
plot_prediction(y_pred)
|
158 |
|
159 |
with colC:
|