Plsek commited on
Commit
00d6ae6
·
1 Parent(s): fc27f4e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -9
app.py CHANGED
@@ -122,7 +122,7 @@ if uploaded_file is not None:
122
  # scale = int(st.selectbox('Scale:',[i+1 for i in range(max_scale)], label_visibility="hidden"))
123
  scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden")
124
  scale = int(scale.split("x")[0]) // 128
125
- st.markdown("""<style>[data-baseweb="select"] {margin-top: 10px;}</style>""", unsafe_allow_html=True)
126
 
127
  with col3:
128
  # st.markdown("""<style>[data-baseweb="select"] {margin-top: 16px;}</style>""", unsafe_allow_html=True)
@@ -136,8 +136,12 @@ if uploaded_file is not None:
136
 
137
  image = np.log10(data+1)
138
  plot_image(image, scale)
 
 
 
 
139
 
140
- if detect:
141
  data, wcs = cut(data, wcs, scale=scale)
142
  image = np.log10(data+1)
143
 
@@ -148,13 +152,8 @@ if uploaded_file is not None:
148
  pred = np.rot90(pred, -j)
149
  y_pred += pred / 4
150
 
151
- with colB:
152
- st.markdown("""<style>[data-baseweb="select"] {margin-top: -36px;}</style>""", unsafe_allow_html=True)
153
- threshold = st.slider("", 0.0, 1.0, 0.0, 0.05, label_visibility="hidden")
154
- if threshold > 0: detect = True
155
- y_pred = np.where(y_pred > threshold, y_pred, 0)
156
- # plot_prediction(y_pred)
157
-
158
  plot_prediction(y_pred)
159
 
160
  with colC:
 
122
  # scale = int(st.selectbox('Scale:',[i+1 for i in range(max_scale)], label_visibility="hidden"))
123
  scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden")
124
  scale = int(scale.split("x")[0]) // 128
125
+ st.markdown("""<style>[data-baseweb="select"] {margin-top: 30px;}</style>""", unsafe_allow_html=True)
126
 
127
  with col3:
128
  # st.markdown("""<style>[data-baseweb="select"] {margin-top: 16px;}</style>""", unsafe_allow_html=True)
 
136
 
137
  image = np.log10(data+1)
138
  plot_image(image, scale)
139
+
140
+ with col3:
141
+ st.markdown("""<style>[data-baseweb="select"] {margin-top: -36px;}</style>""", unsafe_allow_html=True)
142
+ threshold = st.slider("", 0.0, 1.0, 0.0, 0.05, label_visibility="hidden")
143
 
144
+ if detect or bool(threshold):
145
  data, wcs = cut(data, wcs, scale=scale)
146
  image = np.log10(data+1)
147
 
 
152
  pred = np.rot90(pred, -j)
153
  y_pred += pred / 4
154
 
155
+ y_pred = np.where(y_pred > threshold, y_pred, 0)
156
+
 
 
 
 
 
157
  plot_prediction(y_pred)
158
 
159
  with colC: