Update app.py
Browse files
app.py
CHANGED
|
@@ -98,11 +98,11 @@ def decompose_cavity(pred, th2=0.7, amin=10):
|
|
| 98 |
xi, yi = X[b], Y[b]
|
| 99 |
img[xi, yi] = pred[xi, yi]
|
| 100 |
|
| 101 |
-
# THRESHOLDING #2
|
| 102 |
-
if not (img > th2).any(): continue
|
| 103 |
|
| 104 |
-
# MINIMAL AREA
|
| 105 |
-
if np.sum(img) <= amin: continue
|
| 106 |
|
| 107 |
cavities.append(img)
|
| 108 |
|
|
@@ -114,6 +114,7 @@ def decompose_cavity(pred, th2=0.7, amin=10):
|
|
| 114 |
bordersize = 0.6
|
| 115 |
_, col, _ = st.columns([bordersize, 3, bordersize])
|
| 116 |
|
|
|
|
| 117 |
# os.system("rm -r predictions")
|
| 118 |
# os.system("rm predictions.zip Views")
|
| 119 |
# os.system("mkdir -p predictions")
|
|
@@ -174,12 +175,12 @@ if uploaded_file is not None:
|
|
| 174 |
pred = np.rot90(pred, -j)
|
| 175 |
y_pred += pred / 4
|
| 176 |
|
| 177 |
-
|
| 178 |
|
| 179 |
-
|
| 180 |
-
# except: y_pred = np.zeros((128,128))
|
| 181 |
-
try: y_pred
|
| 182 |
except: y_pred = np.zeros((128,128))
|
|
|
|
|
|
|
| 183 |
y_pred_th = np.where(y_pred > threshold, y_pred, 0)
|
| 184 |
# np.save("thresh.npy", y_pred)
|
| 185 |
|
|
|
|
| 98 |
xi, yi = X[b], Y[b]
|
| 99 |
img[xi, yi] = pred[xi, yi]
|
| 100 |
|
| 101 |
+
# # THRESHOLDING #2
|
| 102 |
+
# if not (img > th2).any(): continue
|
| 103 |
|
| 104 |
+
# # MINIMAL AREA
|
| 105 |
+
# if np.sum(img) <= amin: continue
|
| 106 |
|
| 107 |
cavities.append(img)
|
| 108 |
|
|
|
|
| 114 |
bordersize = 0.6
|
| 115 |
_, col, _ = st.columns([bordersize, 3, bordersize])
|
| 116 |
|
| 117 |
+
if os.path.exists("pred.npy"): os.system("rm pred.npy")
|
| 118 |
# os.system("rm -r predictions")
|
| 119 |
# os.system("rm predictions.zip Views")
|
| 120 |
# os.system("mkdir -p predictions")
|
|
|
|
| 175 |
pred = np.rot90(pred, -j)
|
| 176 |
y_pred += pred / 4
|
| 177 |
|
| 178 |
+
np.save("pred.npy", y_pred)
|
| 179 |
|
| 180 |
+
try: y_pred = np.load("pred.npy")
|
|
|
|
|
|
|
| 181 |
except: y_pred = np.zeros((128,128))
|
| 182 |
+
# try: y_pred
|
| 183 |
+
# except: y_pred = np.zeros((128,128))
|
| 184 |
y_pred_th = np.where(y_pred > threshold, y_pred, 0)
|
| 185 |
# np.save("thresh.npy", y_pred)
|
| 186 |
|