Plsek commited on
Commit
7d21ed6
·
1 Parent(s): 3659205

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -180,15 +180,15 @@ if uploaded_file is not None:
180
  # except: y_pred = np.zeros((128,128))
181
  try: y_pred
182
  except: y_pred = np.zeros((128,128))
183
- y_pred = np.where(y_pred > threshold, y_pred, 0)
184
  # np.save("thresh.npy", y_pred)
185
 
186
- plot_prediction(y_pred)
187
 
188
  if decompose:
189
  # y_pred = np.load("thresh.npy")
190
 
191
- cavs = decompose_cavity(y_pred)
192
 
193
  # ccd = CCDData(y_pred, unit="adu", wcs=wcs)
194
  # ccd.write(f"predictions/predicted.fits", overwrite=True)
@@ -209,9 +209,9 @@ if uploaded_file is not None:
209
 
210
  # shutil.make_archive("predictions", 'zip', "predictions")
211
 
212
- with col6:
213
- ccd = CCDData(y_pred, unit="adu", wcs=wcs)
214
- # with open('predictions.zip', 'rb') as f:
215
- # res = f.read()
216
- st.markdown("""<style>[data-baseweb="select"] {margin-top: 16px;}</style>""", unsafe_allow_html=True)
217
- download = st.download_button(label="Download", data=ccd, file_name='prediction.fits', mime="application/octet-stream")
 
180
  # except: y_pred = np.zeros((128,128))
181
  try: y_pred
182
  except: y_pred = np.zeros((128,128))
183
+ y_pred_th = np.where(y_pred > threshold, y_pred, 0)
184
  # np.save("thresh.npy", y_pred)
185
 
186
+ plot_prediction(y_pred_th)
187
 
188
  if decompose:
189
  # y_pred = np.load("thresh.npy")
190
 
191
+ cavs = decompose_cavity(y_pred_th)
192
 
193
  # ccd = CCDData(y_pred, unit="adu", wcs=wcs)
194
  # ccd.write(f"predictions/predicted.fits", overwrite=True)
 
209
 
210
  # shutil.make_archive("predictions", 'zip', "predictions")
211
 
212
+ # with col6:
213
+ # ccd = CCDData(y_pred, unit="adu", wcs=wcs)
214
+ # # with open('predictions.zip', 'rb') as f:
215
+ # # res = f.read()
216
+ # st.markdown("""<style>[data-baseweb="select"] {margin-top: 16px;}</style>""", unsafe_allow_html=True)
217
+ # download = st.download_button(label="Download", data=ccd, file_name='prediction.fits', mime="application/octet-stream")