Update app.py
Browse files
app.py
CHANGED
@@ -117,18 +117,18 @@ if uploaded_file is not None:
|
|
117 |
col3.subheader("Prediction")
|
118 |
col5.subheader("Decomposed")
|
119 |
|
120 |
-
with
|
121 |
# st.markdown("""<style>[data-baseweb="select"] {margin-top: -56px;}</style>""", unsafe_allow_html=True)
|
122 |
max_scale = int(data.shape[0] // 128)
|
123 |
# scale = int(st.selectbox('Scale:',[i+1 for i in range(max_scale)], label_visibility="hidden"))
|
124 |
scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden")
|
125 |
scale = int(scale.split("x")[0]) // 128
|
126 |
|
127 |
-
with
|
128 |
# st.markdown("""<style>[data-baseweb="select"] {margin-top: 16px;}</style>""", unsafe_allow_html=True)
|
129 |
detect = st.button('Detect')
|
130 |
|
131 |
-
with
|
132 |
decompose = st.button('Docompose')
|
133 |
|
134 |
# Make two columns for plots
|
@@ -149,11 +149,12 @@ if uploaded_file is not None:
|
|
149 |
pred = np.rot90(pred, -j)
|
150 |
y_pred += pred / 4
|
151 |
|
152 |
-
# Thresholding
|
153 |
-
y_pred = np.where(y_pred > threshold, y_pred, 0)
|
154 |
-
|
155 |
with colB:
|
156 |
threshold = st.slider("", 0.0, 1.0, 0.4, 0.05, label_visibility="hidden")
|
|
|
|
|
|
|
|
|
157 |
plot_prediction(y_pred)
|
158 |
|
159 |
# if decompose:
|
|
|
117 |
col3.subheader("Prediction")
|
118 |
col5.subheader("Decomposed")
|
119 |
|
120 |
+
with col1:
|
121 |
# st.markdown("""<style>[data-baseweb="select"] {margin-top: -56px;}</style>""", unsafe_allow_html=True)
|
122 |
max_scale = int(data.shape[0] // 128)
|
123 |
# scale = int(st.selectbox('Scale:',[i+1 for i in range(max_scale)], label_visibility="hidden"))
|
124 |
scale = st.selectbox('Scale:',[f"{(i+1)*128}x{(i+1)*128}" for i in range(max_scale)], label_visibility="hidden")
|
125 |
scale = int(scale.split("x")[0]) // 128
|
126 |
|
127 |
+
with col3:
|
128 |
# st.markdown("""<style>[data-baseweb="select"] {margin-top: 16px;}</style>""", unsafe_allow_html=True)
|
129 |
detect = st.button('Detect')
|
130 |
|
131 |
+
with col5:
|
132 |
decompose = st.button('Docompose')
|
133 |
|
134 |
# Make two columns for plots
|
|
|
149 |
pred = np.rot90(pred, -j)
|
150 |
y_pred += pred / 4
|
151 |
|
|
|
|
|
|
|
152 |
with colB:
|
153 |
threshold = st.slider("", 0.0, 1.0, 0.4, 0.05, label_visibility="hidden")
|
154 |
+
|
155 |
+
# Thresholding
|
156 |
+
y_pred = np.where(y_pred > threshold, y_pred, 0)
|
157 |
+
|
158 |
plot_prediction(y_pred)
|
159 |
|
160 |
# if decompose:
|