Update app.py
Browse files
app.py
CHANGED
|
@@ -44,14 +44,16 @@ def plot_image(image, scale):
|
|
| 44 |
plt.gca().add_patch(Rectangle((x0, x0), scale*128, scale*128, linewidth=1, edgecolor='w', facecolor='none'))
|
| 45 |
|
| 46 |
plt.axis('off')
|
| 47 |
-
with colA:
|
|
|
|
| 48 |
|
| 49 |
# Define function to plot the prediction
|
| 50 |
def plot_prediction(pred):
|
| 51 |
plt.figure(figsize=(4, 4))
|
| 52 |
plt.imshow(pred, origin="lower")
|
| 53 |
plt.axis('off')
|
| 54 |
-
with colB:
|
|
|
|
| 55 |
|
| 56 |
# Cut input image and rebin it to 128x128 pixels
|
| 57 |
def cut(data0, wcs0, scale=1):
|
|
@@ -133,26 +135,26 @@ if uploaded_file is not None:
|
|
| 133 |
_, colA, colB, colC, _ = st.columns([bordersize,1,1,1,bordersize])
|
| 134 |
|
| 135 |
image = np.log10(data+1)
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
# with colB:
|
| 139 |
-
# threshold = st.slider("", 0.0, 1.0, 0.4, 0.05, label_visibility="hidden")
|
| 140 |
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
| 156 |
|
| 157 |
# if decompose:
|
| 158 |
# cavs = decompose_cavity(y_pred, )
|
|
|
|
| 44 |
plt.gca().add_patch(Rectangle((x0, x0), scale*128, scale*128, linewidth=1, edgecolor='w', facecolor='none'))
|
| 45 |
|
| 46 |
plt.axis('off')
|
| 47 |
+
# with colA:
|
| 48 |
+
st.pyplot()
|
| 49 |
|
| 50 |
# Define function to plot the prediction
|
| 51 |
def plot_prediction(pred):
|
| 52 |
plt.figure(figsize=(4, 4))
|
| 53 |
plt.imshow(pred, origin="lower")
|
| 54 |
plt.axis('off')
|
| 55 |
+
# with colB:
|
| 56 |
+
st.pyplot()
|
| 57 |
|
| 58 |
# Cut input image and rebin it to 128x128 pixels
|
| 59 |
def cut(data0, wcs0, scale=1):
|
|
|
|
| 135 |
_, colA, colB, colC, _ = st.columns([bordersize,1,1,1,bordersize])
|
| 136 |
|
| 137 |
image = np.log10(data+1)
|
| 138 |
+
with colA:
|
| 139 |
+
plot_image(image, scale)
|
|
|
|
|
|
|
| 140 |
|
| 141 |
+
if detect:
|
| 142 |
+
data, wcs = cut(data, wcs, scale=scale)
|
| 143 |
+
image = np.log10(data+1)
|
| 144 |
|
| 145 |
+
y_pred = 0
|
| 146 |
+
for j in [0,1,2,3]:
|
| 147 |
+
rotated = np.rot90(image, j)
|
| 148 |
+
pred = model.predict(rotated.reshape(1, 128, 128, 1)).reshape(128 ,128)
|
| 149 |
+
pred = np.rot90(pred, -j)
|
| 150 |
+
y_pred += pred / 4
|
| 151 |
+
|
| 152 |
+
# Thresholding
|
| 153 |
+
y_pred = np.where(y_pred > threshold, y_pred, 0)
|
| 154 |
+
|
| 155 |
+
with colB:
|
| 156 |
+
threshold = st.slider("", 0.0, 1.0, 0.4, 0.05, label_visibility="hidden")
|
| 157 |
+
plot_prediction(y_pred)
|
| 158 |
|
| 159 |
# if decompose:
|
| 160 |
# cavs = decompose_cavity(y_pred, )
|