Plsek commited on
Commit
1996205
·
1 Parent(s): 290c969

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -30
app.py CHANGED
@@ -27,36 +27,33 @@ from huggingface_hub import from_pretrained_keras
27
 
28
  # Define function to plot the uploaded image
29
  def plot_image(image, scale):
30
- # plt.figure(figsize=(4, 4))
31
- # x0 = image.shape[0] // 2 - scale * 128 / 2
32
- # plt.imshow(image, origin="lower")
33
- # plt.gca().add_patch(Rectangle((x0-0.5, x0-0.5), scale*128, scale*128, linewidth=1, edgecolor='w', facecolor='none'))
34
- # plt.axis('off')
35
- # plt.tight_layout()
36
- # with colA: st.pyplot()
37
- with colA: st.image(image)
38
 
39
  # Define function to plot the prediction
40
  def plot_prediction(pred):
41
- # plt.figure(figsize=(4, 4))
42
- # plt.imshow(pred, origin="lower", norm=Normalize(vmin=0, vmax=1))
43
- # plt.axis('off')
44
- # with colB: st.pyplot()
45
- with colB: st.image(pred)
46
 
47
  # Define function to plot the decomposed prediction
48
  def plot_decomposed(decomposed):
49
- # plt.figure(figsize=(4, 4))
50
- # plt.imshow(decomposed, origin="lower")
51
- # N = int(np.max(decomposed))
52
- # for i in range(N):
53
- # new = np.where(decomposed == i+1, 1, 0)
54
- # x0, y0 = center_of_mass(new)
55
- # color = "white" if i < N//2 else "black"
56
- # plt.text(y0, x0, f"{i+1}", ha="center", va="center", fontsize=15, color=color)
57
- # plt.axis('off')
58
- # with colC: st.pyplot()
59
- with colC: st.image(decomposed)
60
 
61
  # Define function to cut input image and rebin it to 128x128 pixels
62
  def cut(data0, wcs0, scale=1):
@@ -170,12 +167,13 @@ os.system("rm -R -- */")
170
  # os.system("mkdir -p predictions")
171
 
172
  with col:
173
- # Create heading and description
174
- st.markdown("<h1 align='center'>Cavity Detection Tool</h1>", unsafe_allow_html=True)
175
- st.markdown("Cavity Detection Tool (CADET) is a machine learning pipeline trained to detect X-ray cavities from noisy Chandra images of early-type galaxies.")
176
- st.markdown("To use this tool: upload your image, select the scale of interest, make a prediction, and decompose it into individual cavities!")
177
- st.markdown("Input images should be in units of counts, centred at the galaxy center, and point sources should be filled with surrounding background ([dmfilth](https://cxc.cfa.harvard.edu/ciao/ahelp/dmfilth.html)).")
178
- st.markdown("If you use this tool for your research, please cite [Plšek et al. 2023](https://arxiv.org/abs/2304.05457)")
 
179
 
180
  # _, col_1, col_2, col_3, _ = st.columns([bordersize, 2.0, 0.5, 0.5, bordersize])
181
 
 
27
 
28
  # Define function to plot the uploaded image
29
  def plot_image(image, scale):
30
+ plt.figure(figsize=(4, 4))
31
+ x0 = image.shape[0] // 2 - scale * 128 / 2
32
+ plt.imshow(image, origin="lower")
33
+ plt.gca().add_patch(Rectangle((x0-0.5, x0-0.5), scale*128, scale*128, linewidth=1, edgecolor='w', facecolor='none'))
34
+ plt.axis('off')
35
+ plt.tight_layout()
36
+ with colA: st.pyplot()
 
37
 
38
  # Define function to plot the prediction
39
  def plot_prediction(pred):
40
+ plt.figure(figsize=(4, 4))
41
+ plt.imshow(pred, origin="lower", norm=Normalize(vmin=0, vmax=1))
42
+ plt.axis('off')
43
+ with colB: st.pyplot()
 
44
 
45
  # Define function to plot the decomposed prediction
46
  def plot_decomposed(decomposed):
47
+ plt.figure(figsize=(4, 4))
48
+ plt.imshow(decomposed, origin="lower")
49
+ N = int(np.max(decomposed))
50
+ for i in range(N):
51
+ new = np.where(decomposed == i+1, 1, 0)
52
+ x0, y0 = center_of_mass(new)
53
+ color = "white" if i < N//2 else "black"
54
+ plt.text(y0, x0, f"{i+1}", ha="center", va="center", fontsize=15, color=color)
55
+ plt.axis('off')
56
+ with colC: st.pyplot()
 
57
 
58
  # Define function to cut input image and rebin it to 128x128 pixels
59
  def cut(data0, wcs0, scale=1):
 
167
  # os.system("mkdir -p predictions")
168
 
169
  with col:
170
+ with st.container:
171
+ # Create heading and description
172
+ st.markdown("<h1 align='center'>Cavity Detection Tool</h1>", unsafe_allow_html=True)
173
+ st.markdown("Cavity Detection Tool (CADET) is a machine learning pipeline trained to detect X-ray cavities from noisy Chandra images of early-type galaxies.")
174
+ st.markdown("To use this tool: upload your image, select the scale of interest, make a prediction, and decompose it into individual cavities!")
175
+ st.markdown("Input images should be in units of counts, centred at the galaxy center, and point sources should be filled with surrounding background ([dmfilth](https://cxc.cfa.harvard.edu/ciao/ahelp/dmfilth.html)).")
176
+ st.markdown("If you use this tool for your research, please cite [Plšek et al. 2023](https://arxiv.org/abs/2304.05457)")
177
 
178
  # _, col_1, col_2, col_3, _ = st.columns([bordersize, 2.0, 0.5, 0.5, bordersize])
179