Plsek commited on
Commit
290c969
·
1 Parent(s): b579773

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -21
app.py CHANGED
@@ -27,33 +27,36 @@ from huggingface_hub import from_pretrained_keras
27
 
28
  # Define function to plot the uploaded image
29
  def plot_image(image, scale):
30
- plt.figure(figsize=(4, 4))
31
- x0 = image.shape[0] // 2 - scale * 128 / 2
32
- plt.imshow(image, origin="lower")
33
- plt.gca().add_patch(Rectangle((x0-0.5, x0-0.5), scale*128, scale*128, linewidth=1, edgecolor='w', facecolor='none'))
34
- plt.axis('off')
35
- plt.tight_layout()
36
- with colA: st.pyplot()
 
37
 
38
  # Define function to plot the prediction
39
  def plot_prediction(pred):
40
- plt.figure(figsize=(4, 4))
41
- plt.imshow(pred, origin="lower", norm=Normalize(vmin=0, vmax=1))
42
- plt.axis('off')
43
- with colB: st.pyplot()
 
44
 
45
  # Define function to plot the decomposed prediction
46
  def plot_decomposed(decomposed):
47
- plt.figure(figsize=(4, 4))
48
- plt.imshow(decomposed, origin="lower")
49
- N = int(np.max(decomposed))
50
- for i in range(N):
51
- new = np.where(decomposed == i+1, 1, 0)
52
- x0, y0 = center_of_mass(new)
53
- color = "white" if i < N//2 else "black"
54
- plt.text(y0, x0, f"{i+1}", ha="center", va="center", fontsize=15, color=color)
55
- plt.axis('off')
56
- with colC: st.pyplot()
 
57
 
58
  # Define function to cut input image and rebin it to 128x128 pixels
59
  def cut(data0, wcs0, scale=1):
 
27
 
28
  # Define function to plot the uploaded image
29
  def plot_image(image, scale):
30
+ # plt.figure(figsize=(4, 4))
31
+ # x0 = image.shape[0] // 2 - scale * 128 / 2
32
+ # plt.imshow(image, origin="lower")
33
+ # plt.gca().add_patch(Rectangle((x0-0.5, x0-0.5), scale*128, scale*128, linewidth=1, edgecolor='w', facecolor='none'))
34
+ # plt.axis('off')
35
+ # plt.tight_layout()
36
+ # with colA: st.pyplot()
37
+ with colA: st.image(image)
38
 
39
  # Define function to plot the prediction
40
  def plot_prediction(pred):
41
+ # plt.figure(figsize=(4, 4))
42
+ # plt.imshow(pred, origin="lower", norm=Normalize(vmin=0, vmax=1))
43
+ # plt.axis('off')
44
+ # with colB: st.pyplot()
45
+ with colB: st.image(pred)
46
 
47
  # Define function to plot the decomposed prediction
48
  def plot_decomposed(decomposed):
49
+ # plt.figure(figsize=(4, 4))
50
+ # plt.imshow(decomposed, origin="lower")
51
+ # N = int(np.max(decomposed))
52
+ # for i in range(N):
53
+ # new = np.where(decomposed == i+1, 1, 0)
54
+ # x0, y0 = center_of_mass(new)
55
+ # color = "white" if i < N//2 else "black"
56
+ # plt.text(y0, x0, f"{i+1}", ha="center", va="center", fontsize=15, color=color)
57
+ # plt.axis('off')
58
+ # with colC: st.pyplot()
59
+ with colC: st.image(decomposed)
60
 
61
  # Define function to cut input image and rebin it to 128x128 pixels
62
  def cut(data0, wcs0, scale=1):