Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from dataclasses import dataclass | |
from typing import Optional, Union, Tuple, List | |
import torch | |
import torch.nn as nn | |
from torch import Tensor | |
from torch.nn import functional as F | |
import time | |
def find_multiple(n: int, k: int) -> int: | |
if n % k == 0: | |
return n | |
return n + k - (n % k) | |
class AdaptiveLayerNorm(nn.Module): | |
r"""Adaptive Layer Normalization""" | |
def __init__(self, d_model, norm) -> None: | |
super(AdaptiveLayerNorm, self).__init__() | |
self.linear = nn.Linear(d_model, 6 * d_model) | |
self.act = nn.SiLU() | |
self.norm = norm | |
self.d_model = d_model | |
self.eps = self.norm.eps | |
def forward(self, x: Tensor, emb: Tensor) -> Tuple[Tensor]: | |
emb = self.linear(self.act(emb)) | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = torch.chunk(emb, 6, dim=-1) | |
x = self.norm(x) * (1 + scale_msa) + shift_msa | |
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp | |
class AdaptiveLayerNormFinal(nn.Module): | |
r"""Adaptive Layer Normalization""" | |
def __init__(self, d_model, norm) -> None: | |
super(AdaptiveLayerNormFinal, self).__init__() | |
self.linear = nn.Linear(d_model, 2 * d_model) | |
self.act = nn.SiLU() | |
self.norm = norm | |
self.d_model = d_model | |
self.eps = self.norm.eps | |
def forward(self, x: Tensor, emb: Tensor) -> Tuple[Tensor]: | |
emb = self.linear(self.act(emb)) | |
scale, shift = torch.chunk(emb, 2, dim=-1) | |
x = self.norm(x) * (1 + scale) + shift | |
return x | |
class ModelArgs: | |
block_size: int = 2048 | |
vocab_size: int = 32000 | |
n_layer: int = 32 | |
n_head: int = 32 | |
dim: int = 4096 | |
intermediate_size: int = None | |
n_local_heads: int = -1 | |
head_dim: int = 64 | |
rope_base: float = 10000 | |
norm_eps: float = 1e-5 | |
uvit_skip_connection: bool = False | |
time_as_token: bool = False | |
dropout_rate: float = 0.1 | |
attn_dropout_rate: float = 0.1 | |
def __post_init__(self): | |
if self.n_local_heads == -1: | |
self.n_local_heads = self.n_head | |
if self.intermediate_size is None: | |
hidden_dim = 4 * self.dim | |
n_hidden = int(2 * hidden_dim / 3) | |
self.intermediate_size = find_multiple(n_hidden, 256) | |
# self.head_dim = self.dim // self.n_head | |
class Transformer(nn.Module): | |
def __init__(self, config: ModelArgs) -> None: | |
super().__init__() | |
self.config = config | |
self.layers = nn.ModuleList(TransformerBlock(config) for _ in range(config.n_layer)) | |
self.norm = AdaptiveLayerNormFinal(config.dim, RMSNorm(config.dim, eps=config.norm_eps)) | |
self.max_batch_size = -1 | |
self.max_seq_length = config.block_size | |
self.uvit_skip_connection = self.config.uvit_skip_connection | |
if self.uvit_skip_connection: | |
self.layers_emit_skip = [i for i in range(self.config.n_layer) if i < self.config.n_layer // 2] | |
self.layers_receive_skip = [i for i in range(self.config.n_layer) if i > self.config.n_layer // 2] | |
else: | |
self.layers_emit_skip = [] | |
self.layers_receive_skip = [] | |
freqs_cis = precompute_freqs_cis(self.config.block_size, self.config.head_dim, | |
self.config.rope_base) | |
self.register_buffer("freqs_cis", freqs_cis) | |
causal_mask = torch.tril( | |
torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool) | |
) | |
self.register_buffer("causal_mask", causal_mask) | |
def forward(self, | |
x: Tensor, | |
c: Tensor, | |
input_pos: Optional[Tensor] = None, | |
mask: Optional[Tensor] = None, | |
) -> Tensor: | |
mask = mask[..., input_pos] | |
freqs_cis = self.freqs_cis[input_pos] | |
for i, layer in enumerate(self.layers): | |
x = layer(x, c, freqs_cis, mask) | |
x = self.norm(x, c) | |
return x | |
class TransformerBlock(nn.Module): | |
def __init__(self, config: ModelArgs) -> None: | |
super().__init__() | |
self.attention = Attention(config) | |
self.feed_forward = FeedForward(config) | |
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps) | |
self.attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps)) | |
def forward(self, | |
x: Tensor, | |
c: Tensor, | |
freqs_cis: Tensor, | |
mask: Tensor, | |
) -> Tensor: | |
normed_x, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attention_norm(x, emb=c) | |
# attention | |
attn_output = self.attention(normed_x, freqs_cis, mask) | |
x = x + gate_msa * attn_output | |
normed_x = self.ffn_norm(x) * (1 + scale_mlp) + shift_mlp | |
ff_output = self.feed_forward(normed_x) | |
x = x + gate_mlp * ff_output | |
return x | |
class Attention(nn.Module): | |
def __init__(self, config: ModelArgs, is_cross_attention: bool = False): | |
super().__init__() | |
assert config.dim % config.n_head == 0 | |
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim | |
# key, query, value projections for all heads, but in a batch | |
if is_cross_attention: | |
self.wq = nn.Linear(config.dim, config.n_head * config.head_dim, bias=False) | |
self.wkv = nn.Linear(config.context_dim, 2 * config.n_local_heads * config.head_dim, bias=False) | |
else: | |
self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False) | |
self.wo = nn.Linear(config.head_dim * config.n_head, config.dim, bias=False) | |
self.kv_cache = None | |
self.n_head = config.n_head | |
self.head_dim = config.head_dim | |
self.n_local_heads = config.n_local_heads | |
self.dim = config.dim | |
self.attn_dropout_rate = config.attn_dropout_rate | |
def forward(self, | |
x: Tensor, | |
freqs_cis: Tensor, | |
mask: Tensor, | |
context: Optional[Tensor] = None, | |
context_freqs_cis: Optional[Tensor] = None, | |
) -> Tensor: | |
bsz, seqlen, _ = x.shape | |
kv_size = self.n_local_heads * self.head_dim | |
q, k, v = self.wqkv(x).split([kv_size, kv_size, kv_size], dim=-1) | |
context_seqlen = seqlen | |
q = q.view(bsz, seqlen, self.n_head, self.head_dim) | |
k = k.view(bsz, context_seqlen, self.n_local_heads, self.head_dim) | |
v = v.view(bsz, context_seqlen, self.n_local_heads, self.head_dim) | |
q = apply_rotary_emb(q, freqs_cis) | |
k = apply_rotary_emb(k, freqs_cis) | |
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) | |
k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1) | |
v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1) | |
y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0) | |
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.head_dim * self.n_head) | |
y = self.wo(y) | |
return y | |
class FeedForward(nn.Module): | |
def __init__(self, config: ModelArgs) -> None: | |
super().__init__() | |
self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False) | |
self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False) | |
self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False) | |
self.dropout = nn.Dropout(config.dropout_rate) | |
def forward(self, x: Tensor) -> Tensor: | |
return self.w2(self.dropout(F.silu(self.w1(x)) * self.w3(x))) | |
class RMSNorm(nn.Module): | |
def __init__(self, dim: int, eps: float = 1e-5): | |
super().__init__() | |
self.eps = eps | |
self.weight = nn.Parameter(torch.ones(dim)) | |
def _norm(self, x): | |
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) | |
def forward(self, x: Tensor) -> Tensor: | |
output = self._norm(x.float()).type_as(x) | |
return output * self.weight | |
def precompute_freqs_cis( | |
seq_len: int, n_elem: int, base: int = 10000, | |
dtype: torch.dtype = torch.bfloat16 | |
) -> Tensor: | |
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)) | |
t = torch.arange(seq_len, device=freqs.device) | |
freqs = torch.outer(t, freqs) | |
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) | |
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) | |
return cache.to(dtype=dtype) | |
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor: | |
xshaped = x.float().reshape(*x.shape[:-1], -1, 2) | |
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) | |
x_out2 = torch.stack( | |
[ | |
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], | |
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], | |
], | |
-1, | |
) | |
x_out2 = x_out2.flatten(3) | |
return x_out2.type_as(x) | |