Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,158 Bytes
56a1295 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass
from typing import Optional, Union, Tuple, List
import torch
import torch.nn as nn
from torch import Tensor
from torch.nn import functional as F
import time
def find_multiple(n: int, k: int) -> int:
if n % k == 0:
return n
return n + k - (n % k)
class AdaptiveLayerNorm(nn.Module):
r"""Adaptive Layer Normalization"""
def __init__(self, d_model, norm) -> None:
super(AdaptiveLayerNorm, self).__init__()
self.linear = nn.Linear(d_model, 6 * d_model)
self.act = nn.SiLU()
self.norm = norm
self.d_model = d_model
self.eps = self.norm.eps
def forward(self, x: Tensor, emb: Tensor) -> Tuple[Tensor]:
emb = self.linear(self.act(emb))
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = torch.chunk(emb, 6, dim=-1)
x = self.norm(x) * (1 + scale_msa) + shift_msa
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class AdaptiveLayerNormFinal(nn.Module):
r"""Adaptive Layer Normalization"""
def __init__(self, d_model, norm) -> None:
super(AdaptiveLayerNormFinal, self).__init__()
self.linear = nn.Linear(d_model, 2 * d_model)
self.act = nn.SiLU()
self.norm = norm
self.d_model = d_model
self.eps = self.norm.eps
def forward(self, x: Tensor, emb: Tensor) -> Tuple[Tensor]:
emb = self.linear(self.act(emb))
scale, shift = torch.chunk(emb, 2, dim=-1)
x = self.norm(x) * (1 + scale) + shift
return x
@dataclass
class ModelArgs:
block_size: int = 2048
vocab_size: int = 32000
n_layer: int = 32
n_head: int = 32
dim: int = 4096
intermediate_size: int = None
n_local_heads: int = -1
head_dim: int = 64
rope_base: float = 10000
norm_eps: float = 1e-5
uvit_skip_connection: bool = False
time_as_token: bool = False
dropout_rate: float = 0.1
attn_dropout_rate: float = 0.1
def __post_init__(self):
if self.n_local_heads == -1:
self.n_local_heads = self.n_head
if self.intermediate_size is None:
hidden_dim = 4 * self.dim
n_hidden = int(2 * hidden_dim / 3)
self.intermediate_size = find_multiple(n_hidden, 256)
# self.head_dim = self.dim // self.n_head
class Transformer(nn.Module):
def __init__(self, config: ModelArgs) -> None:
super().__init__()
self.config = config
self.layers = nn.ModuleList(TransformerBlock(config) for _ in range(config.n_layer))
self.norm = AdaptiveLayerNormFinal(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
self.max_batch_size = -1
self.max_seq_length = config.block_size
self.uvit_skip_connection = self.config.uvit_skip_connection
if self.uvit_skip_connection:
self.layers_emit_skip = [i for i in range(self.config.n_layer) if i < self.config.n_layer // 2]
self.layers_receive_skip = [i for i in range(self.config.n_layer) if i > self.config.n_layer // 2]
else:
self.layers_emit_skip = []
self.layers_receive_skip = []
freqs_cis = precompute_freqs_cis(self.config.block_size, self.config.head_dim,
self.config.rope_base)
self.register_buffer("freqs_cis", freqs_cis)
causal_mask = torch.tril(
torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool)
)
self.register_buffer("causal_mask", causal_mask)
def forward(self,
x: Tensor,
c: Tensor,
input_pos: Optional[Tensor] = None,
mask: Optional[Tensor] = None,
) -> Tensor:
mask = mask[..., input_pos]
freqs_cis = self.freqs_cis[input_pos]
for i, layer in enumerate(self.layers):
x = layer(x, c, freqs_cis, mask)
x = self.norm(x, c)
return x
class TransformerBlock(nn.Module):
def __init__(self, config: ModelArgs) -> None:
super().__init__()
self.attention = Attention(config)
self.feed_forward = FeedForward(config)
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps))
def forward(self,
x: Tensor,
c: Tensor,
freqs_cis: Tensor,
mask: Tensor,
) -> Tensor:
normed_x, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attention_norm(x, emb=c)
# attention
attn_output = self.attention(normed_x, freqs_cis, mask)
x = x + gate_msa * attn_output
normed_x = self.ffn_norm(x) * (1 + scale_mlp) + shift_mlp
ff_output = self.feed_forward(normed_x)
x = x + gate_mlp * ff_output
return x
class Attention(nn.Module):
def __init__(self, config: ModelArgs, is_cross_attention: bool = False):
super().__init__()
assert config.dim % config.n_head == 0
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim
# key, query, value projections for all heads, but in a batch
if is_cross_attention:
self.wq = nn.Linear(config.dim, config.n_head * config.head_dim, bias=False)
self.wkv = nn.Linear(config.context_dim, 2 * config.n_local_heads * config.head_dim, bias=False)
else:
self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False)
self.wo = nn.Linear(config.head_dim * config.n_head, config.dim, bias=False)
self.kv_cache = None
self.n_head = config.n_head
self.head_dim = config.head_dim
self.n_local_heads = config.n_local_heads
self.dim = config.dim
self.attn_dropout_rate = config.attn_dropout_rate
def forward(self,
x: Tensor,
freqs_cis: Tensor,
mask: Tensor,
context: Optional[Tensor] = None,
context_freqs_cis: Optional[Tensor] = None,
) -> Tensor:
bsz, seqlen, _ = x.shape
kv_size = self.n_local_heads * self.head_dim
q, k, v = self.wqkv(x).split([kv_size, kv_size, kv_size], dim=-1)
context_seqlen = seqlen
q = q.view(bsz, seqlen, self.n_head, self.head_dim)
k = k.view(bsz, context_seqlen, self.n_local_heads, self.head_dim)
v = v.view(bsz, context_seqlen, self.n_local_heads, self.head_dim)
q = apply_rotary_emb(q, freqs_cis)
k = apply_rotary_emb(k, freqs_cis)
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0)
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.head_dim * self.n_head)
y = self.wo(y)
return y
class FeedForward(nn.Module):
def __init__(self, config: ModelArgs) -> None:
super().__init__()
self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False)
self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False)
self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, x: Tensor) -> Tensor:
return self.w2(self.dropout(F.silu(self.w1(x)) * self.w3(x)))
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
def forward(self, x: Tensor) -> Tensor:
output = self._norm(x.float()).type_as(x)
return output * self.weight
def precompute_freqs_cis(
seq_len: int, n_elem: int, base: int = 10000,
dtype: torch.dtype = torch.bfloat16
) -> Tensor:
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem))
t = torch.arange(seq_len, device=freqs.device)
freqs = torch.outer(t, freqs)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
return cache.to(dtype=dtype)
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor:
xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2)
x_out2 = torch.stack(
[
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
],
-1,
)
x_out2 = x_out2.flatten(3)
return x_out2.type_as(x)
|