Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from tqdm import tqdm | |
class CFM(torch.nn.Module): | |
def __init__( | |
self, | |
estimator: torch.nn.Module, | |
): | |
super().__init__() | |
self.sigma_min = 1e-6 | |
self.estimator = estimator | |
self.in_channels = estimator.in_channels | |
self.criterion = torch.nn.L1Loss() | |
def inference(self, | |
mu: torch.Tensor, | |
x_lens: torch.Tensor, | |
prompt: torch.Tensor, | |
style: torch.Tensor, | |
n_timesteps=10, | |
temperature=1.0, | |
inference_cfg_rate=[0.5, 0.5], | |
random_voice=False, | |
): | |
"""Forward diffusion | |
Args: | |
mu (torch.Tensor): output of encoder | |
shape: (batch_size, n_feats, mel_timesteps) | |
x_lens (torch.Tensor): length of each mel-spectrogram | |
shape: (batch_size,) | |
prompt (torch.Tensor): prompt | |
shape: (batch_size, n_feats, prompt_len) | |
style (torch.Tensor): style | |
shape: (batch_size, style_dim) | |
n_timesteps (int): number of diffusion steps | |
temperature (float, optional): temperature for scaling noise. Defaults to 1.0. | |
inference_cfg_rate (float, optional): Classifier-Free Guidance inference introduced in VoiceBox. Defaults to 0.5. | |
Returns: | |
sample: generated mel-spectrogram | |
shape: (batch_size, n_feats, mel_timesteps) | |
""" | |
B, T = mu.size(0), mu.size(1) | |
z = torch.randn([B, self.in_channels, T], device=mu.device) * temperature | |
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device) | |
t_span = t_span + (-1) * (torch.cos(torch.pi / 2 * t_span) - 1 + t_span) | |
return self.solve_euler(z, x_lens, prompt, mu, style, t_span, inference_cfg_rate, random_voice) | |
def solve_euler(self, x, x_lens, prompt, mu, style, t_span, inference_cfg_rate=[0.5, 0.5], random_voice=False,): | |
""" | |
Fixed euler solver for ODEs. | |
Args: | |
x (torch.Tensor): random noise | |
t_span (torch.Tensor): n_timesteps interpolated | |
shape: (n_timesteps + 1,) | |
mu (torch.Tensor): output of encoder | |
shape: (batch_size, n_feats, mel_timesteps) | |
x_lens (torch.Tensor): length of each mel-spectrogram | |
shape: (batch_size,) | |
prompt (torch.Tensor): prompt | |
shape: (batch_size, n_feats, prompt_len) | |
style (torch.Tensor): style | |
shape: (batch_size, style_dim) | |
inference_cfg_rate (float, optional): Classifier-Free Guidance inference introduced in VoiceBox. Defaults to 0.5. | |
sway_sampling (bool, optional): Sway sampling. Defaults to False. | |
amo_sampling (bool, optional): AMO sampling. Defaults to False. | |
""" | |
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0] | |
# apply prompt | |
prompt_len = prompt.size(-1) | |
prompt_x = torch.zeros_like(x) | |
prompt_x[..., :prompt_len] = prompt[..., :prompt_len] | |
x[..., :prompt_len] = 0 | |
for step in tqdm(range(1, len(t_span))): | |
if random_voice: | |
cfg_dphi_dt = self.estimator( | |
torch.cat([x, x], dim=0), | |
torch.cat([torch.zeros_like(prompt_x), torch.zeros_like(prompt_x)], dim=0), | |
torch.cat([x_lens, x_lens], dim=0), | |
torch.cat([t.unsqueeze(0), t.unsqueeze(0)], dim=0), | |
torch.cat([torch.zeros_like(style), torch.zeros_like(style)], dim=0), | |
torch.cat([mu, torch.zeros_like(mu)], dim=0), | |
) | |
cond_txt, uncond = cfg_dphi_dt[0:1], cfg_dphi_dt[1:2] | |
dphi_dt = ((1.0 + inference_cfg_rate[0]) * cond_txt - inference_cfg_rate[0] * uncond) | |
elif all(i == 0 for i in inference_cfg_rate): | |
dphi_dt = self.estimator(x, prompt_x, x_lens, t.unsqueeze(0), style, mu) | |
elif inference_cfg_rate[0] == 0: | |
# Classifier-Free Guidance inference introduced in VoiceBox | |
cfg_dphi_dt = self.estimator( | |
torch.cat([x, x], dim=0), | |
torch.cat([prompt_x, torch.zeros_like(prompt_x)], dim=0), | |
torch.cat([x_lens, x_lens], dim=0), | |
torch.cat([t.unsqueeze(0), t.unsqueeze(0)], dim=0), | |
torch.cat([style, torch.zeros_like(style)], dim=0), | |
torch.cat([mu, mu], dim=0), | |
) | |
cond_txt_spk, cond_txt = cfg_dphi_dt[0:1], cfg_dphi_dt[1:2] | |
dphi_dt = ((1.0 + inference_cfg_rate[1]) * cond_txt_spk - inference_cfg_rate[1] * cond_txt) | |
elif inference_cfg_rate[1] == 0: | |
cfg_dphi_dt = self.estimator( | |
torch.cat([x, x], dim=0), | |
torch.cat([prompt_x, torch.zeros_like(prompt_x)], dim=0), | |
torch.cat([x_lens, x_lens], dim=0), | |
torch.cat([t.unsqueeze(0), t.unsqueeze(0)], dim=0), | |
torch.cat([style, torch.zeros_like(style)], dim=0), | |
torch.cat([mu, torch.zeros_like(mu)], dim=0), | |
) | |
cond_txt_spk, uncond = cfg_dphi_dt[0:1], cfg_dphi_dt[1:2] | |
dphi_dt = ((1.0 + inference_cfg_rate[0]) * cond_txt_spk - inference_cfg_rate[0] * uncond) | |
else: | |
# Multi-condition Classifier-Free Guidance inference introduced in MegaTTS3 | |
cfg_dphi_dt = self.estimator( | |
torch.cat([x, x, x], dim=0), | |
torch.cat([prompt_x, torch.zeros_like(prompt_x), torch.zeros_like(prompt_x)], dim=0), | |
torch.cat([x_lens, x_lens, x_lens], dim=0), | |
torch.cat([t.unsqueeze(0), t.unsqueeze(0), t.unsqueeze(0)], dim=0), | |
torch.cat([style, torch.zeros_like(style), torch.zeros_like(style)], dim=0), | |
torch.cat([mu, mu, torch.zeros_like(mu)], dim=0), | |
) | |
cond_txt_spk, cond_txt, uncond = cfg_dphi_dt[0:1], cfg_dphi_dt[1:2], cfg_dphi_dt[2:3] | |
dphi_dt = (1.0 + inference_cfg_rate[0] + inference_cfg_rate[1]) * cond_txt_spk - \ | |
inference_cfg_rate[0] * uncond - inference_cfg_rate[1] * cond_txt | |
x = x + dt * dphi_dt | |
t = t + dt | |
if step < len(t_span) - 1: | |
dt = t_span[step + 1] - t | |
x[:, :, :prompt_len] = 0 | |
return x | |
def forward(self, x1, x_lens, prompt_lens, mu, style): | |
"""Computes diffusion loss | |
Args: | |
x1 (torch.Tensor): Target | |
shape: (batch_size, n_feats, mel_timesteps) | |
mask (torch.Tensor): target mask | |
shape: (batch_size, 1, mel_timesteps) | |
mu (torch.Tensor): output of encoder | |
shape: (batch_size, n_feats, mel_timesteps) | |
spks (torch.Tensor, optional): speaker embedding. Defaults to None. | |
shape: (batch_size, spk_emb_dim) | |
Returns: | |
loss: conditional flow matching loss | |
y: conditional flow | |
shape: (batch_size, n_feats, mel_timesteps) | |
""" | |
b, _, t = x1.shape | |
# random timestep | |
t = torch.rand([b, 1, 1], device=mu.device, dtype=x1.dtype) | |
# sample noise p(x_0) | |
z = torch.randn_like(x1) | |
y = (1 - (1 - self.sigma_min) * t) * z + t * x1 | |
u = x1 - (1 - self.sigma_min) * z | |
prompt = torch.zeros_like(x1) | |
for bib in range(b): | |
prompt[bib, :, :prompt_lens[bib]] = x1[bib, :, :prompt_lens[bib]] | |
# range covered by prompt are set to 0 | |
y[bib, :, :prompt_lens[bib]] = 0 | |
estimator_out = self.estimator(y, prompt, x_lens, t.squeeze(), style, mu) | |
loss = 0 | |
for bib in range(b): | |
loss += self.criterion(estimator_out[bib, :, prompt_lens[bib]:x_lens[bib]], u[bib, :, prompt_lens[bib]:x_lens[bib]]) | |
loss /= b | |
return loss | |