File size: 8,356 Bytes
56a1295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import torch
from tqdm import tqdm

class CFM(torch.nn.Module):
    def __init__(

        self,

        estimator: torch.nn.Module,

    ):
        super().__init__()
        self.sigma_min = 1e-6
        self.estimator = estimator
        self.in_channels = estimator.in_channels
        self.criterion = torch.nn.L1Loss()

    @torch.inference_mode()
    def inference(self,

                  mu: torch.Tensor,

                  x_lens: torch.Tensor,

                  prompt: torch.Tensor,

                  style: torch.Tensor,

                  n_timesteps=10,

                  temperature=1.0,

                  inference_cfg_rate=[0.5, 0.5],

                  random_voice=False,

                  ):
        """Forward diffusion



        Args:

            mu (torch.Tensor): output of encoder

                shape: (batch_size, n_feats, mel_timesteps)

            x_lens (torch.Tensor): length of each mel-spectrogram

                shape: (batch_size,)

            prompt (torch.Tensor): prompt

                shape: (batch_size, n_feats, prompt_len)

            style (torch.Tensor): style

                shape: (batch_size, style_dim)

            n_timesteps (int): number of diffusion steps

            temperature (float, optional): temperature for scaling noise. Defaults to 1.0.

            inference_cfg_rate (float, optional): Classifier-Free Guidance inference introduced in VoiceBox. Defaults to 0.5.



        Returns:

            sample: generated mel-spectrogram

                shape: (batch_size, n_feats, mel_timesteps)

        """
        B, T = mu.size(0), mu.size(1)
        z = torch.randn([B, self.in_channels, T], device=mu.device) * temperature
        t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
        t_span = t_span + (-1) * (torch.cos(torch.pi / 2 * t_span) - 1 + t_span)
        return self.solve_euler(z, x_lens, prompt, mu, style, t_span, inference_cfg_rate, random_voice)
    def solve_euler(self, x, x_lens, prompt, mu, style, t_span, inference_cfg_rate=[0.5, 0.5], random_voice=False,):
        """

        Fixed euler solver for ODEs.

        Args:

            x (torch.Tensor): random noise

            t_span (torch.Tensor): n_timesteps interpolated

                shape: (n_timesteps + 1,)

            mu (torch.Tensor): output of encoder

                shape: (batch_size, n_feats, mel_timesteps)

            x_lens (torch.Tensor): length of each mel-spectrogram

                shape: (batch_size,)

            prompt (torch.Tensor): prompt

                shape: (batch_size, n_feats, prompt_len)

            style (torch.Tensor): style

                shape: (batch_size, style_dim)

            inference_cfg_rate (float, optional): Classifier-Free Guidance inference introduced in VoiceBox. Defaults to 0.5.

            sway_sampling (bool, optional): Sway sampling. Defaults to False.

            amo_sampling (bool, optional): AMO sampling. Defaults to False.

        """
        t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]

        # apply prompt
        prompt_len = prompt.size(-1)
        prompt_x = torch.zeros_like(x)
        prompt_x[..., :prompt_len] = prompt[..., :prompt_len]
        x[..., :prompt_len] = 0
        for step in tqdm(range(1, len(t_span))):
            if random_voice:
                cfg_dphi_dt = self.estimator(
                    torch.cat([x, x], dim=0),
                    torch.cat([torch.zeros_like(prompt_x), torch.zeros_like(prompt_x)], dim=0),
                    torch.cat([x_lens, x_lens], dim=0),
                    torch.cat([t.unsqueeze(0), t.unsqueeze(0)], dim=0),
                    torch.cat([torch.zeros_like(style), torch.zeros_like(style)], dim=0),
                    torch.cat([mu, torch.zeros_like(mu)], dim=0),
                )
                cond_txt, uncond = cfg_dphi_dt[0:1], cfg_dphi_dt[1:2]
                dphi_dt = ((1.0 + inference_cfg_rate[0]) * cond_txt - inference_cfg_rate[0] * uncond)
            elif all(i == 0 for i in inference_cfg_rate):
                dphi_dt = self.estimator(x, prompt_x, x_lens, t.unsqueeze(0), style, mu)
            elif inference_cfg_rate[0] == 0:
                # Classifier-Free Guidance inference introduced in VoiceBox
                cfg_dphi_dt = self.estimator(
                    torch.cat([x, x], dim=0),
                    torch.cat([prompt_x, torch.zeros_like(prompt_x)], dim=0),
                    torch.cat([x_lens, x_lens], dim=0),
                    torch.cat([t.unsqueeze(0), t.unsqueeze(0)], dim=0),
                    torch.cat([style, torch.zeros_like(style)], dim=0),
                    torch.cat([mu, mu], dim=0),
                )
                cond_txt_spk, cond_txt = cfg_dphi_dt[0:1], cfg_dphi_dt[1:2]
                dphi_dt = ((1.0 + inference_cfg_rate[1]) * cond_txt_spk - inference_cfg_rate[1] * cond_txt)
            elif inference_cfg_rate[1] == 0:
                cfg_dphi_dt = self.estimator(
                    torch.cat([x, x], dim=0),
                    torch.cat([prompt_x, torch.zeros_like(prompt_x)], dim=0),
                    torch.cat([x_lens, x_lens], dim=0),
                    torch.cat([t.unsqueeze(0), t.unsqueeze(0)], dim=0),
                    torch.cat([style, torch.zeros_like(style)], dim=0),
                    torch.cat([mu, torch.zeros_like(mu)], dim=0),
                )
                cond_txt_spk, uncond = cfg_dphi_dt[0:1], cfg_dphi_dt[1:2]
                dphi_dt = ((1.0 + inference_cfg_rate[0]) * cond_txt_spk - inference_cfg_rate[0] * uncond)
            else:
                # Multi-condition Classifier-Free Guidance inference introduced in MegaTTS3
                cfg_dphi_dt = self.estimator(
                    torch.cat([x, x, x], dim=0),
                    torch.cat([prompt_x, torch.zeros_like(prompt_x), torch.zeros_like(prompt_x)], dim=0),
                    torch.cat([x_lens, x_lens, x_lens], dim=0),
                    torch.cat([t.unsqueeze(0), t.unsqueeze(0), t.unsqueeze(0)], dim=0),
                    torch.cat([style, torch.zeros_like(style), torch.zeros_like(style)], dim=0),
                    torch.cat([mu, mu, torch.zeros_like(mu)], dim=0),
                )
                cond_txt_spk, cond_txt, uncond = cfg_dphi_dt[0:1], cfg_dphi_dt[1:2], cfg_dphi_dt[2:3]
                dphi_dt = (1.0 + inference_cfg_rate[0] + inference_cfg_rate[1]) * cond_txt_spk - \
                    inference_cfg_rate[0] * uncond - inference_cfg_rate[1] * cond_txt
            x = x + dt * dphi_dt
            t = t + dt
            if step < len(t_span) - 1:
                dt = t_span[step + 1] - t
            x[:, :, :prompt_len] = 0

        return x

    def forward(self, x1, x_lens, prompt_lens, mu, style):
        """Computes diffusion loss



        Args:

            x1 (torch.Tensor): Target

                shape: (batch_size, n_feats, mel_timesteps)

            mask (torch.Tensor): target mask

                shape: (batch_size, 1, mel_timesteps)

            mu (torch.Tensor): output of encoder

                shape: (batch_size, n_feats, mel_timesteps)

            spks (torch.Tensor, optional): speaker embedding. Defaults to None.

                shape: (batch_size, spk_emb_dim)



        Returns:

            loss: conditional flow matching loss

            y: conditional flow

                shape: (batch_size, n_feats, mel_timesteps)

        """
        b, _, t = x1.shape

        # random timestep
        t = torch.rand([b, 1, 1], device=mu.device, dtype=x1.dtype)
        # sample noise p(x_0)
        z = torch.randn_like(x1)

        y = (1 - (1 - self.sigma_min) * t) * z + t * x1
        u = x1 - (1 - self.sigma_min) * z
        prompt = torch.zeros_like(x1)
        for bib in range(b):
            prompt[bib, :, :prompt_lens[bib]] = x1[bib, :, :prompt_lens[bib]]
            # range covered by prompt are set to 0
            y[bib, :, :prompt_lens[bib]] = 0

        estimator_out = self.estimator(y, prompt, x_lens, t.squeeze(), style, mu)
        loss = 0
        for bib in range(b):
            loss += self.criterion(estimator_out[bib, :, prompt_lens[bib]:x_lens[bib]], u[bib, :, prompt_lens[bib]:x_lens[bib]])
        loss /= b

        return loss