Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import torch | |
import yaml | |
import argparse | |
from seed_vc_wrapper import SeedVCWrapper | |
from modules.v2.vc_wrapper import VoiceConversionWrapper | |
# Set up device and torch configurations | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
elif torch.backends.mps.is_available(): | |
device = torch.device("mps") | |
else: | |
device = torch.device("cpu") | |
torch._inductor.config.coordinate_descent_tuning = True | |
torch._inductor.config.triton.unique_kernel_names = True | |
if hasattr(torch._inductor.config, "fx_graph_cache"): | |
# Experimental feature to reduce compilation times, will be on by default in future | |
torch._inductor.config.fx_graph_cache = True | |
dtype = torch.float16 | |
def load_v2_models(): | |
from hydra.utils import instantiate | |
from omegaconf import DictConfig | |
cfg = DictConfig(yaml.safe_load(open("configs/v2/vc_wrapper.yaml", "r"))) | |
vc_wrapper = instantiate(cfg) | |
vc_wrapper.load_checkpoints() | |
vc_wrapper.to(device) | |
vc_wrapper.eval() | |
vc_wrapper.setup_ar_caches(max_batch_size=1, max_seq_len=4096, dtype=dtype, device=device) | |
return vc_wrapper | |
# Global variables to store model instances | |
vc_wrapper_v1 = SeedVCWrapper() | |
vc_wrapper_v2 = load_v2_models() | |
def convert_voice_v1_wrapper(source_audio_path, target_audio_path, diffusion_steps=10, | |
length_adjust=1.0, inference_cfg_rate=0.7, f0_condition=False, | |
auto_f0_adjust=True, pitch_shift=0, stream_output=True): | |
""" | |
Wrapper function for vc_wrapper.convert_voice that can be decorated with @spaces.GPU | |
""" | |
# Use yield from to properly handle the generator | |
yield from vc_wrapper_v1.convert_voice( | |
source=source_audio_path, | |
target=target_audio_path, | |
diffusion_steps=diffusion_steps, | |
length_adjust=length_adjust, | |
inference_cfg_rate=inference_cfg_rate, | |
f0_condition=f0_condition, | |
auto_f0_adjust=auto_f0_adjust, | |
pitch_shift=pitch_shift, | |
stream_output=stream_output | |
) | |
def convert_voice_v2_wrapper(source_audio_path, target_audio_path, diffusion_steps=30, | |
length_adjust=1.0, intelligebility_cfg_rate=0.7, similarity_cfg_rate=0.7, | |
top_p=0.7, temperature=0.7, repetition_penalty=1.5, | |
convert_style=False, anonymization_only=False, stream_output=True): | |
""" | |
Wrapper function for vc_wrapper.convert_voice_with_streaming that can be decorated with @spaces.GPU | |
""" | |
# Use yield from to properly handle the generator | |
yield from vc_wrapper_v2.convert_voice_with_streaming( | |
source_audio_path=source_audio_path, | |
target_audio_path=target_audio_path, | |
diffusion_steps=diffusion_steps, | |
length_adjust=length_adjust, | |
intelligebility_cfg_rate=intelligebility_cfg_rate, | |
similarity_cfg_rate=similarity_cfg_rate, | |
top_p=top_p, | |
temperature=temperature, | |
repetition_penalty=repetition_penalty, | |
convert_style=convert_style, | |
anonymization_only=anonymization_only, | |
device=device, | |
dtype=dtype, | |
stream_output=stream_output | |
) | |
def create_v1_interface(): | |
# Set up Gradio interface | |
description = ( | |
"Zero-shot voice conversion with in-context learning. For local deployment please check [GitHub repository](https://github.com/Plachtaa/seed-vc) " | |
"for details and updates.<br>Note that any reference audio will be forcefully clipped to 25s if beyond this length.<br> " | |
"If total duration of source and reference audio exceeds 30s, source audio will be processed in chunks.<br> " | |
"无需训练的 zero-shot 语音/歌声转换模型,若需本地部署查看[GitHub页面](https://github.com/Plachtaa/seed-vc)<br>" | |
"请注意,参考音频若超过 25 秒,则会被自动裁剪至此长度。<br>若源音频和参考音频的总时长超过 30 秒,源音频将被分段处理。") | |
inputs = [ | |
gr.Audio(type="filepath", label="Source Audio / 源音频"), | |
gr.Audio(type="filepath", label="Reference Audio / 参考音频"), | |
gr.Slider(minimum=1, maximum=200, value=10, step=1, label="Diffusion Steps / 扩散步数", | |
info="10 by default, 50~100 for best quality / 默认为 10,50~100 为最佳质量"), | |
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust / 长度调整", | |
info="<1.0 for speed-up speech, >1.0 for slow-down speech / <1.0 加速语速,>1.0 减慢语速"), | |
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate", | |
info="has subtle influence / 有微小影响"), | |
gr.Checkbox(label="Use F0 conditioned model / 启用F0输入", value=False, | |
info="Must set to true for singing voice conversion / 歌声转换时必须勾选"), | |
gr.Checkbox(label="Auto F0 adjust / 自动F0调整", value=True, | |
info="Roughly adjust F0 to match target voice. Only works when F0 conditioned model is used. / 粗略调整 F0 以匹配目标音色,仅在勾选 '启用F0输入' 时生效"), | |
gr.Slider(label='Pitch shift / 音调变换', minimum=-24, maximum=24, step=1, value=0, | |
info="Pitch shift in semitones, only works when F0 conditioned model is used / 半音数的音高变换,仅在勾选 '启用F0输入' 时生效"), | |
] | |
examples = [ | |
["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7, False, True, 0], | |
["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.7, True, True, 0], | |
["examples/source/Wiz Khalifa,Charlie Puth - See You Again [vocals]_[cut_28sec].wav", | |
"examples/reference/teio_0.wav", 100, 1.0, 0.7, True, False, 0], | |
["examples/source/TECHNOPOLIS - 2085 [vocals]_[cut_14sec].wav", | |
"examples/reference/trump_0.wav", 50, 1.0, 0.7, True, False, -12], | |
] | |
outputs = [ | |
gr.Audio(label="Stream Output Audio / 流式输出", streaming=True, format='mp3'), | |
gr.Audio(label="Full Output Audio / 完整输出", streaming=False, format='wav') | |
] | |
return gr.Interface( | |
fn=convert_voice_v1_wrapper, | |
description=description, | |
inputs=inputs, | |
outputs=outputs, | |
title="Seed Voice Conversion V1 (Voice & Singing Voice Conversion)", | |
examples=examples, | |
cache_examples=False, | |
) | |
def create_v2_interface(): | |
# Set up Gradio interface | |
description = ( | |
"Zero-shot voice/style conversion with in-context learning. For local deployment please check [GitHub repository](https://github.com/Plachtaa/seed-vc) " | |
"for details and updates.<br>Note that any reference audio will be forcefully clipped to 25s if beyond this length.<br> " | |
"If total duration of source and reference audio exceeds 30s, source audio will be processed in chunks.<br> " | |
"Please click the 'convert style/emotion/accent' checkbox to convert the style, emotion, or accent of the source audio, or else only timbre conversion will be performed.<br> " | |
"Click the 'anonymization only' checkbox will ignore reference audio but convert source to an 'average voice' determined by model itself.<br> " | |
"无需训练的 zero-shot 语音/口音转换模型,若需本地部署查看[GitHub页面](https://github.com/Plachtaa/seed-vc)<br>" | |
"请注意,参考音频若超过 25 秒,则会被自动裁剪至此长度。<br>若源音频和参考音频的总时长超过 30 秒,源音频将被分段处理。" | |
"<br>请勾选 'convert style/emotion/accent' 以转换源音频的风格、情感或口音,否则仅执行音色转换。<br>" | |
"勾选 'anonymization only' 会无视参考音频而将源音频转换为某种由模型自身决定的 '平均音色'。<br>" | |
"Credits to [Vevo](https://github.com/open-mmlab/Amphion/tree/main/models/vc/vevo), [MegaTTS3](https://github.com/bytedance/MegaTTS3)" | |
) | |
inputs = [ | |
gr.Audio(type="filepath", label="Source Audio / 源音频"), | |
gr.Audio(type="filepath", label="Reference Audio / 参考音频"), | |
gr.Slider(minimum=1, maximum=200, value=30, step=1, label="Diffusion Steps / 扩散步数", | |
info="30 by default, 50~100 for best quality / 默认为 30,50~100 为最佳质量"), | |
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust / 长度调整", | |
info="<1.0 for speed-up speech, >1.0 for slow-down speech / <1.0 加速语速,>1.0 减慢语速"), | |
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.0, label="Intelligibility CFG Rate", | |
info="controls pronunciation intelligibility / 控制发音清晰度"), | |
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Similarity CFG Rate", | |
info="controls similarity to reference audio / 控制与参考音频的相似度"), | |
gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.9, label="Top-p", | |
info="AR model sampling top P"), | |
gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Temperature", | |
info="AR model sampling temperature"), | |
gr.Slider(minimum=1.0, maximum=3.0, step=0.1, value=1.0, label="Repetition Penalty", | |
info="AR model sampling repetition penalty"), | |
gr.Checkbox(label="convert style/emotion/accent", value=False), | |
gr.Checkbox(label="anonymization only", value=False), | |
] | |
examples = [ | |
["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7, 0.7, 0.9, 1.0, 1.0, True, | |
False], | |
["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.7, 0.7, 0.9, 1.0, 1.0, True, False], | |
] | |
outputs = [ | |
gr.Audio(label="Stream Output Audio / 流式输出", streaming=True, format='mp3'), | |
gr.Audio(label="Full Output Audio / 完整输出", streaming=False, format='wav') | |
] | |
return gr.Interface( | |
fn=convert_voice_v2_wrapper, | |
description=description, | |
inputs=inputs, | |
outputs=outputs, | |
title="Seed Voice Conversion V2 (Voice & Style Conversion)", | |
examples=examples, | |
cache_examples=False, | |
) | |
def main(args): | |
# Create interfaces | |
v1_interface = create_v1_interface() | |
v2_interface = create_v2_interface() | |
# Create tabs | |
with gr.Blocks(title="Seed Voice Conversion") as demo: | |
gr.Markdown("# Seed Voice Conversion") | |
gr.Markdown("Choose between V1 (Voice & Singing Voice Conversion) or V2 (Voice & Style Conversion)") | |
with gr.Tabs(): | |
with gr.TabItem("V2 - Voice & Style Conversion"): | |
v2_interface.render() | |
with gr.TabItem("V1 - Voice & Singing Voice Conversion"): | |
v1_interface.render() | |
# Launch the combined interface | |
demo.launch() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--compile", type=bool, default=True) | |
args = parser.parse_args() | |
main(args) |