File size: 11,247 Bytes
63edc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500b392
63edc9f
 
bbf31be
63edc9f
 
 
 
 
 
 
 
 
 
 
 
a889d0d
 
70214c1
a889d0d
63edc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2fcaa6
63edc9f
 
 
 
 
 
 
 
 
 
 
 
500b392
63edc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500b392
63edc9f
500b392
63edc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2fcaa6
63edc9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500b392
63edc9f
56a1295
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import spaces
import gradio as gr
import torch
import yaml
import argparse
from seed_vc_wrapper import SeedVCWrapper
from modules.v2.vc_wrapper import VoiceConversionWrapper

# Set up device and torch configurations
if torch.cuda.is_available():
    device = torch.device("cuda")
elif torch.backends.mps.is_available():
    device = torch.device("mps")
else:
    device = torch.device("cpu")

torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.triton.unique_kernel_names = True

if hasattr(torch._inductor.config, "fx_graph_cache"):
    # Experimental feature to reduce compilation times, will be on by default in future
    torch._inductor.config.fx_graph_cache = True

dtype = torch.float16


def load_v2_models():
    from hydra.utils import instantiate
    from omegaconf import DictConfig
    cfg = DictConfig(yaml.safe_load(open("configs/v2/vc_wrapper.yaml", "r")))
    vc_wrapper = instantiate(cfg)
    vc_wrapper.load_checkpoints()
    vc_wrapper.to(device)
    vc_wrapper.eval()

    vc_wrapper.setup_ar_caches(max_batch_size=1, max_seq_len=4096, dtype=dtype, device=device)

    return vc_wrapper

# Global variables to store model instances
vc_wrapper_v1 = SeedVCWrapper()
vc_wrapper_v2 = load_v2_models()

@spaces.GPU
def convert_voice_v1_wrapper(source_audio_path, target_audio_path, diffusion_steps=10,
                             length_adjust=1.0, inference_cfg_rate=0.7, f0_condition=False,
                             auto_f0_adjust=True, pitch_shift=0, stream_output=True):
    """
    Wrapper function for vc_wrapper.convert_voice that can be decorated with @spaces.GPU
    """

    # Use yield from to properly handle the generator
    yield from vc_wrapper_v1.convert_voice(
        source=source_audio_path,
        target=target_audio_path,
        diffusion_steps=diffusion_steps,
        length_adjust=length_adjust,
        inference_cfg_rate=inference_cfg_rate,
        f0_condition=f0_condition,
        auto_f0_adjust=auto_f0_adjust,
        pitch_shift=pitch_shift,
        stream_output=stream_output
    )

@spaces.GPU
def convert_voice_v2_wrapper(source_audio_path, target_audio_path, diffusion_steps=30,
                             length_adjust=1.0, intelligebility_cfg_rate=0.7, similarity_cfg_rate=0.7,
                             top_p=0.7, temperature=0.7, repetition_penalty=1.5,
                             convert_style=False, anonymization_only=False, stream_output=True):
    """
    Wrapper function for vc_wrapper.convert_voice_with_streaming that can be decorated with @spaces.GPU
    """

    # Use yield from to properly handle the generator
    yield from vc_wrapper_v2.convert_voice_with_streaming(
        source_audio_path=source_audio_path,
        target_audio_path=target_audio_path,
        diffusion_steps=diffusion_steps,
        length_adjust=length_adjust,
        intelligebility_cfg_rate=intelligebility_cfg_rate,
        similarity_cfg_rate=similarity_cfg_rate,
        top_p=top_p,
        temperature=temperature,
        repetition_penalty=repetition_penalty,
        convert_style=convert_style,
        anonymization_only=anonymization_only,
        device=device,
        dtype=dtype,
        stream_output=stream_output
    )


def create_v1_interface():
    # Set up Gradio interface
    description = (
        "Zero-shot voice conversion with in-context learning. For local deployment please check [GitHub repository](https://github.com/Plachtaa/seed-vc) "
        "for details and updates.<br>Note that any reference audio will be forcefully clipped to 25s if beyond this length.<br> "
        "If total duration of source and reference audio exceeds 30s, source audio will be processed in chunks.<br> "
        "无需训练的 zero-shot 语音/歌声转换模型,若需本地部署查看[GitHub页面](https://github.com/Plachtaa/seed-vc)<br>"
        "请注意,参考音频若超过 25 秒,则会被自动裁剪至此长度。<br>若源音频和参考音频的总时长超过 30 秒,源音频将被分段处理。")

    inputs = [
        gr.Audio(type="filepath", label="Source Audio / 源音频"),
        gr.Audio(type="filepath", label="Reference Audio / 参考音频"),
        gr.Slider(minimum=1, maximum=200, value=10, step=1, label="Diffusion Steps / 扩散步数",
                  info="10 by default, 50~100 for best quality / 默认为 10,50~100 为最佳质量"),
        gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust / 长度调整",
                  info="<1.0 for speed-up speech, >1.0 for slow-down speech / <1.0 加速语速,>1.0 减慢语速"),
        gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate",
                  info="has subtle influence / 有微小影响"),
        gr.Checkbox(label="Use F0 conditioned model / 启用F0输入", value=False,
                    info="Must set to true for singing voice conversion / 歌声转换时必须勾选"),
        gr.Checkbox(label="Auto F0 adjust / 自动F0调整", value=True,
                    info="Roughly adjust F0 to match target voice. Only works when F0 conditioned model is used. / 粗略调整 F0 以匹配目标音色,仅在勾选 '启用F0输入' 时生效"),
        gr.Slider(label='Pitch shift / 音调变换', minimum=-24, maximum=24, step=1, value=0,
                  info="Pitch shift in semitones, only works when F0 conditioned model is used / 半音数的音高变换,仅在勾选 '启用F0输入' 时生效"),
    ]

    examples = [
        ["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7, False, True, 0],
        ["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.7, True, True, 0],
        ["examples/source/Wiz Khalifa,Charlie Puth - See You Again [vocals]_[cut_28sec].wav",
         "examples/reference/teio_0.wav", 100, 1.0, 0.7, True, False, 0],
        ["examples/source/TECHNOPOLIS - 2085 [vocals]_[cut_14sec].wav",
         "examples/reference/trump_0.wav", 50, 1.0, 0.7, True, False, -12],
    ]

    outputs = [
        gr.Audio(label="Stream Output Audio / 流式输出", streaming=True, format='mp3'),
        gr.Audio(label="Full Output Audio / 完整输出", streaming=False, format='wav')
    ]

    return gr.Interface(
        fn=convert_voice_v1_wrapper,
        description=description,
        inputs=inputs,
        outputs=outputs,
        title="Seed Voice Conversion V1 (Voice & Singing Voice Conversion)",
        examples=examples,
        cache_examples=False,
    )


def create_v2_interface():
    # Set up Gradio interface
    description = (
        "Zero-shot voice/style conversion with in-context learning. For local deployment please check [GitHub repository](https://github.com/Plachtaa/seed-vc) "
        "for details and updates.<br>Note that any reference audio will be forcefully clipped to 25s if beyond this length.<br> "
        "If total duration of source and reference audio exceeds 30s, source audio will be processed in chunks.<br> "
        "Please click the 'convert style/emotion/accent' checkbox to convert the style, emotion, or accent of the source audio, or else only timbre conversion will be performed.<br> "
        "Click the 'anonymization only' checkbox will ignore reference audio but convert source to an 'average voice' determined by model itself.<br> "
        "无需训练的 zero-shot 语音/口音转换模型,若需本地部署查看[GitHub页面](https://github.com/Plachtaa/seed-vc)<br>"
        "请注意,参考音频若超过 25 秒,则会被自动裁剪至此长度。<br>若源音频和参考音频的总时长超过 30 秒,源音频将被分段处理。"
        "<br>请勾选 'convert style/emotion/accent' 以转换源音频的风格、情感或口音,否则仅执行音色转换。<br>"
        "勾选 'anonymization only' 会无视参考音频而将源音频转换为某种由模型自身决定的 '平均音色'。<br>"

        "Credits to [Vevo](https://github.com/open-mmlab/Amphion/tree/main/models/vc/vevo), [MegaTTS3](https://github.com/bytedance/MegaTTS3)"
        )
    inputs = [
        gr.Audio(type="filepath", label="Source Audio / 源音频"),
        gr.Audio(type="filepath", label="Reference Audio / 参考音频"),
        gr.Slider(minimum=1, maximum=200, value=30, step=1, label="Diffusion Steps / 扩散步数",
                  info="30 by default, 50~100 for best quality / 默认为 30,50~100 为最佳质量"),
        gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust / 长度调整",
                  info="<1.0 for speed-up speech, >1.0 for slow-down speech / <1.0 加速语速,>1.0 减慢语速"),
        gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.0, label="Intelligibility CFG Rate",
                  info="controls pronunciation intelligibility / 控制发音清晰度"),
        gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Similarity CFG Rate",
                  info="controls similarity to reference audio / 控制与参考音频的相似度"),
        gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.9, label="Top-p",
                  info="AR model sampling top P"),
        gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Temperature",
                  info="AR model sampling temperature"),
        gr.Slider(minimum=1.0, maximum=3.0, step=0.1, value=1.0, label="Repetition Penalty",
                  info="AR model sampling repetition penalty"),
        gr.Checkbox(label="convert style/emotion/accent", value=False),
        gr.Checkbox(label="anonymization only", value=False),
    ]

    examples = [
        ["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7, 0.7, 0.9, 1.0, 1.0, True,
         False],
        ["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.7, 0.7, 0.9, 1.0, 1.0, True, False],
    ]

    outputs = [
        gr.Audio(label="Stream Output Audio / 流式输出", streaming=True, format='mp3'),
        gr.Audio(label="Full Output Audio / 完整输出", streaming=False, format='wav')
    ]

    return gr.Interface(
        fn=convert_voice_v2_wrapper,
        description=description,
        inputs=inputs,
        outputs=outputs,
        title="Seed Voice Conversion V2 (Voice & Style Conversion)",
        examples=examples,
        cache_examples=False,
    )


def main(args):
    # Create interfaces
    v1_interface = create_v1_interface()
    v2_interface = create_v2_interface()

    # Create tabs
    with gr.Blocks(title="Seed Voice Conversion") as demo:
        gr.Markdown("# Seed Voice Conversion")
        gr.Markdown("Choose between V1 (Voice & Singing Voice Conversion) or V2 (Voice & Style Conversion)")

        with gr.Tabs():
            with gr.TabItem("V2 - Voice & Style Conversion"):
                v2_interface.render()
            with gr.TabItem("V1 - Voice & Singing Voice Conversion"):
                v1_interface.render()

    # Launch the combined interface
    demo.launch()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--compile", type=bool, default=True)
    args = parser.parse_args()
    main(args)