Spaces:
Sleeping
Sleeping
File size: 4,483 Bytes
2b799f2 1479d8c 2b799f2 a2cc10f e6f2d3f 74c4534 e6f2d3f 2b799f2 74c4534 2b799f2 3d9ade7 e6f2d3f 3d9ade7 fd70c6f e6f2d3f 3d9ade7 e6f2d3f 3d9ade7 e6f2d3f 3d9ade7 e6f2d3f 3d9ade7 e6f2d3f 3d9ade7 e6f2d3f 3d9ade7 e6f2d3f 3d9ade7 e6f2d3f 3d9ade7 74c4534 2b799f2 1479d8c 2b799f2 1479d8c bf83e6e 2b799f2 3d9ade7 a829665 2b799f2 74c4534 2b799f2 1479d8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
import requests
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
import json
import base64
import time
import gradio as gr
from PIL import Image
from io import BytesIO
import os
# Your host address - this will need to scale in the future
host = "http://18.119.36.46:8888"
def image_prompt(prompt, image1, image2, image3, image4):
try:
# Reading image files and encoding them
image_sources = [open(image, "rb").read() for image in [image1, image2, image3, image4]]
encoded_images = [base64.b64encode(img).decode('utf-8') for img in image_sources]
# Prepare the payload with all the image prompts
params = {
"prompt": prompt,
"image_prompts": [
{
"cn_img": encoded_img,
"cn_stop": 1,
"cn_weight": 1,
"cn_type": "ImagePrompt"
} for encoded_img in encoded_images
],
"async_process": True
}
# Setup retry strategy for robust request handling
session = requests.Session()
retries = Retry(total=5, backoff_factor=1, status_forcelist=[502, 503, 504])
session.mount('http://', HTTPAdapter(max_retries=retries))
# Initiating the job
response = session.post(
url=f"{host}/v2/generation/text-to-image-with-ip",
data=json.dumps(params),
headers={"Content-Type": "application/json"},
timeout=10 # Timeout can be adjusted as needed
)
response.raise_for_status() # Ensure we catch any HTTP errors
result = response.json()
job_id = result.get('job_id')
if job_id:
while True:
query_url = f"{host}/v1/generation/query-job?job_id={job_id}&require_step_preview=true"
response = session.get(query_url, timeout=10)
response.raise_for_status() # Catch any issues with querying the job
job_data = response.json()
job_stage = job_data.get("job_stage")
job_step_preview = job_data.get("job_step_preview")
job_result = job_data.get("job_result")
# Real-time update to image and status
if job_stage == "RUNNING" and job_step_preview:
image = Image.open(BytesIO(base64.b64decode(job_step_preview)))
yield image, f"Job is running smoothly. Current stage: {job_stage}. Hang tight!"
elif job_stage == "SUCCESS":
final_image_url = job_result[0].get("url")
if final_image_url:
final_image_url = final_image_url.replace("127.0.0.1", "18.119.36.46")
image_response = session.get(final_image_url, timeout=10)
image = Image.open(BytesIO(image_response.content))
yield image, "Job completed successfully. Enjoy your masterpiece!"
break
else:
yield None, "Final image URL not found. Something went amiss."
break
elif job_stage == "FAILED":
yield None, "Job failed. Let's check the parameters and try again."
break
time.sleep(2) # Pause for 2 seconds before checking again
else:
yield None, "Job ID not found. Did we miss something in the setup?"
except Exception as e:
yield None, f"An error occurred: {str(e)}. We'll need to debug this."
def gradio_app():
with gr.Blocks() as demo:
prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here")
with gr.Row():
image1 = gr.Image(label="Image Prompt 1", type="filepath")
image2 = gr.Image(label="Image Prompt 2", type="filepath")
image3 = gr.Image(label="Image Prompt 3", type="filepath")
image4 = gr.Image(label="Image Prompt 4", type="filepath")
output_image = gr.Image(label="Generated Image")
status = gr.Textbox(label="Status")
generate_button = gr.Button("Generate Image")
generate_button.click(fn=image_prompt, inputs=[prompt, image1, image2, image3, image4], outputs=[output_image, status], stream=True)
demo.launch()
if __name__ == "__main__":
gradio_app() |