rayochoajr commited on
Commit
2b799f2
·
verified ·
1 Parent(s): b5ff3d3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +149 -133
app.py CHANGED
@@ -1,146 +1,162 @@
1
- import gradio as gr
2
- import numpy as np
3
- import random
4
- from diffusers import DiffusionPipeline
5
- import torch
6
-
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
 
17
 
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
20
 
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
 
22
 
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
25
-
26
- generator = torch.Generator().manual_seed(seed)
 
27
 
28
- image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
- return image
 
 
39
 
40
- examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
- ]
45
-
46
- css="""
47
- #col-container {
48
- margin: 0 auto;
49
- max-width: 520px;
50
- }
51
- """
52
-
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
-
58
- with gr.Blocks(css=css) as demo:
59
 
60
- with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
- """)
65
-
66
- with gr.Row():
67
 
68
- prompt = gr.Text(
69
- label="Prompt",
70
- show_label=False,
71
- max_lines=1,
72
- placeholder="Enter your prompt",
73
- container=False,
74
- )
75
 
76
- run_button = gr.Button("Run", scale=0)
77
-
78
- result = gr.Image(label="Result", show_label=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
- )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
- with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
-
117
- with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
134
-
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
- )
139
 
140
- run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145
 
146
- demo.queue().launch()
 
 
1
+ """
2
+ {
3
+ "inputs": {
4
+ "prompt": "A text prompt to generate the image from.",
5
+ "image_prompts": [
6
+ {
7
+ "cn_img": "Base64 encoded image data for the first image prompt.",
8
+ "cn_stop": "ControlNet stop value for the first image prompt.",
9
+ "cn_weight": "ControlNet weight value for the first image prompt.",
10
+ "cn_type": "Type of the first image prompt."
11
+ },
12
+ {
13
+ "cn_img": "Base64 encoded image data for the second image prompt.",
14
+ "cn_stop": "ControlNet stop value for the second image prompt.",
15
+ "cn_weight": "ControlNet weight value for the second image prompt.",
16
+ "cn_type": "Type of the second image prompt."
17
+ },
18
+ {
19
+ "cn_img": "Base64 encoded image data for the third image prompt.",
20
+ "cn_stop": "ControlNet stop value for the third image prompt.",
21
+ "cn_weight": "ControlNet weight value for the third image prompt.",
22
+ "cn_type": "Type of the third image prompt."
23
+ },
24
+ {
25
+ "cn_img": "Base64 encoded image data for the fourth image prompt.",
26
+ "cn_stop": "ControlNet stop value for the fourth image prompt.",
27
+ "cn_weight": "ControlNet weight value for the fourth image prompt.",
28
+ "cn_type": "Type of the fourth image prompt."
29
+ }
30
+ ],
31
+ "async_process": "Boolean to indicate if the process should be asynchronous."
32
+ },
33
+ "outputs": {
34
+ "job_id": "The ID of the job submitted for image generation.",
35
+ "job_stage": "The current stage of the job (e.g., RUNNING, SUCCESS, FAILED).",
36
+ "final_image_url": "The URL of the final generated image.",
37
+ "step_preview": "Base64 encoded step preview image data."
38
+ }
39
+ }
40
+ """
41
 
42
+ import requests
43
+ from requests.adapters import HTTPAdapter
44
+ from requests.packages.urllib3.util.retry import Retry
45
+ import json
46
+ import base64
47
+ import time
48
+ import gradio as gr
49
+ from PIL import Image
50
+ import os
51
 
52
+ host = "http://18.119.36.46:8888"
 
53
 
54
+ # 📂 Get the directory where the script is located
55
+ script_dir = os.path.dirname(os.path.abspath(__file__))
56
 
57
+ def image_prompt(prompt, image1, image2, image3, image4):
58
+ source1 = open(image1, "rb").read()
59
+ source2 = open(image2, "rb").read()
60
+ source3 = open(image3, "rb").read()
61
+ source4 = open(image4, "rb").read()
62
 
63
+ params = {
64
+ "prompt": prompt,
65
+ "image_prompts": [
66
+ {
67
+ "cn_img": base64.b64encode(source1).decode('utf-8'),
68
+ "cn_stop": 1,
69
+ "cn_weight": 1,
70
+ "cn_type": "ImagePrompt"
71
+ },{
72
+ "cn_img": base64.b64encode(source2).decode('utf-8'),
73
+ "cn_stop": 1,
74
+ "cn_weight": 1,
75
+ "cn_type": "ImagePrompt"
76
+ },{
77
+ "cn_img": base64.b64encode(source3).decode('utf-8'),
78
+ "cn_stop": 1,
79
+ "cn_weight": 1,
80
+ "cn_type": "ImagePrompt"
81
+ },{
82
+ "cn_img": base64.b64encode(source4).decode('utf-8'),
83
+ "cn_stop": 1,
84
+ "cn_weight": 1,
85
+ "cn_type": "ImagePrompt"
86
+ }
87
+ ],
88
+ "async_process": True
89
+ }
90
 
91
+ session = requests.Session()
92
+ retries = Retry(total=5, backoff_factor=1, status_forcelist=[502, 503, 504])
93
+ session.mount('http://', HTTPAdapter(max_retries=retries))
94
 
95
+ response = session.post(
96
+ url=f"{host}/v2/generation/text-to-image-with-ip",
97
+ data=json.dumps(params),
98
+ headers={"Content-Type": "application/json"},
99
+ timeout=10 # Increase timeout as needed
100
+ )
101
+ result = response.json()
 
 
 
 
 
 
 
 
 
 
 
 
102
 
103
+ job_id = result.get('job_id')
104
+ if job_id:
105
+ while True:
106
+ query_url = f"http://18.119.36.46:8888/v1/generation/query-job?job_id={job_id}&require_step_preview=true"
107
+ response = session.get(query_url, timeout=10) # Increase timeout as needed
108
+ job_data = response.json()
 
109
 
110
+ job_stage = job_data.get("job_stage")
 
 
 
 
 
 
111
 
112
+ if job_stage == "SUCCESS":
113
+ final_image_url = job_data.get("job_result")[0].get("url")
114
+ if final_image_url:
115
+ final_image_url = final_image_url.replace("127.0.0.1", "18.119.36.46")
116
+ image_response = session.get(final_image_url, timeout=10) # Increase timeout as needed
117
+ with open("output.png", "wb") as f:
118
+ f.write(image_response.content)
119
+ return "output.png", "Job completed successfully."
120
+ else:
121
+ return None, "Final image URL not found in the job data."
122
+ elif job_stage == "RUNNING":
123
+ step_preview_base64 = job_data.get("job_step_preview")
124
+ if step_preview_base64:
125
+ with open("output.png", "wb") as f:
126
+ f.write(base64.b64decode(step_preview_base64))
127
+ time.sleep(5)
128
+ elif job_stage == "FAILED":
129
+ return None, "Job failed."
130
+ else:
131
+ return None, "Job ID not found."
132
 
133
+ def create_status_image():
134
+ if os.path.exists("output.png"):
135
+ return "output.png"
136
+ else:
137
+ return None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138
 
139
+ def gradio_app():
140
+ with gr.Blocks() as demo:
141
+ prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here")
142
+ with gr.Row():
143
+ image1 = gr.Image(label="Image Prompt 1", type="filepath")
144
+ image2 = gr.Image(label="Image Prompt 2", type="filepath")
145
+ image3 = gr.Image(label="Image Prompt 3", type="filepath")
146
+ image4 = gr.Image(label="Image Prompt 4", type="filepath")
147
+ output_image = gr.Image(label="Generated Image")
148
+ status = gr.Textbox(label="Status")
149
+
150
+ generate_button = gr.Button("Generate Image")
151
+ generate_button.click(image_prompt, inputs=[prompt, image1, image2, image3, image4], outputs=[output_image, status])
152
+
153
+ # 🖼️ Display the status image
154
+ status_image = gr.Image(label="Queue Status", interactive=False)
155
+
156
+ # ⏲️ Update the image every 5 seconds
157
+ demo.load(create_status_image, every=5, outputs=status_image)
158
+
159
+ demo.launch()
160
 
161
+ if __name__ == "__main__":
162
+ gradio_app()