File size: 6,432 Bytes
2b799f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74c4534
2b799f2
 
 
 
 
 
 
 
 
74c4534
2b799f2
74c4534
2b799f2
 
74c4534
2b799f2
 
 
 
 
74c4534
2b799f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74c4534
2b799f2
 
 
74c4534
2b799f2
 
 
 
 
 
 
74c4534
2b799f2
 
 
 
 
 
74c4534
2b799f2
74c4534
2b799f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74c4534
2b799f2
 
 
 
 
74c4534
2b799f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74c4534
2b799f2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"""
{
    "inputs": {
        "prompt": "A text prompt to generate the image from.",
        "image_prompts": [
            {
                "cn_img": "Base64 encoded image data for the first image prompt.",
                "cn_stop": "ControlNet stop value for the first image prompt.",
                "cn_weight": "ControlNet weight value for the first image prompt.",
                "cn_type": "Type of the first image prompt."
            },
            {
                "cn_img": "Base64 encoded image data for the second image prompt.",
                "cn_stop": "ControlNet stop value for the second image prompt.",
                "cn_weight": "ControlNet weight value for the second image prompt.",
                "cn_type": "Type of the second image prompt."
            },
            {
                "cn_img": "Base64 encoded image data for the third image prompt.",
                "cn_stop": "ControlNet stop value for the third image prompt.",
                "cn_weight": "ControlNet weight value for the third image prompt.",
                "cn_type": "Type of the third image prompt."
            },
            {
                "cn_img": "Base64 encoded image data for the fourth image prompt.",
                "cn_stop": "ControlNet stop value for the fourth image prompt.",
                "cn_weight": "ControlNet weight value for the fourth image prompt.",
                "cn_type": "Type of the fourth image prompt."
            }
        ],
        "async_process": "Boolean to indicate if the process should be asynchronous."
    },
    "outputs": {
        "job_id": "The ID of the job submitted for image generation.",
        "job_stage": "The current stage of the job (e.g., RUNNING, SUCCESS, FAILED).",
        "final_image_url": "The URL of the final generated image.",
        "step_preview": "Base64 encoded step preview image data."
    }
}
"""

import requests
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
import json
import base64
import time
import gradio as gr
from PIL import Image
import os

host = "http://18.119.36.46:8888"

# 📂 Get the directory where the script is located
script_dir = os.path.dirname(os.path.abspath(__file__))

def image_prompt(prompt, image1, image2, image3, image4):
    source1 = open(image1, "rb").read()
    source2 = open(image2, "rb").read()
    source3 = open(image3, "rb").read()
    source4 = open(image4, "rb").read()
    
    params = {
        "prompt": prompt,
        "image_prompts": [
            {
                "cn_img": base64.b64encode(source1).decode('utf-8'),
                "cn_stop": 1,
                "cn_weight": 1,
                "cn_type": "ImagePrompt"
            },{
                "cn_img": base64.b64encode(source2).decode('utf-8'),
                "cn_stop": 1,
                "cn_weight": 1,
                "cn_type": "ImagePrompt"
            },{
                "cn_img": base64.b64encode(source3).decode('utf-8'),
                "cn_stop": 1,
                "cn_weight": 1,
                "cn_type": "ImagePrompt"
            },{
                "cn_img": base64.b64encode(source4).decode('utf-8'),
                "cn_stop": 1,
                "cn_weight": 1,
                "cn_type": "ImagePrompt"
            }
        ],
        "async_process": True
    }
    
    session = requests.Session()
    retries = Retry(total=5, backoff_factor=1, status_forcelist=[502, 503, 504])
    session.mount('http://', HTTPAdapter(max_retries=retries))

    response = session.post(
        url=f"{host}/v2/generation/text-to-image-with-ip",
        data=json.dumps(params),
        headers={"Content-Type": "application/json"},
        timeout=10  # Increase timeout as needed
    )
    result = response.json()
    
    job_id = result.get('job_id')
    if job_id:
        while True:
            query_url = f"http://18.119.36.46:8888/v1/generation/query-job?job_id={job_id}&require_step_preview=true"
            response = session.get(query_url, timeout=10)  # Increase timeout as needed
            job_data = response.json()
            
            job_stage = job_data.get("job_stage")
            
            if job_stage == "SUCCESS":
                final_image_url = job_data.get("job_result")[0].get("url")
                if final_image_url:
                    final_image_url = final_image_url.replace("127.0.0.1", "18.119.36.46")
                    image_response = session.get(final_image_url, timeout=10)  # Increase timeout as needed
                    with open("output.png", "wb") as f:
                        f.write(image_response.content)
                    return "output.png", "Job completed successfully."
                else:
                    return None, "Final image URL not found in the job data."
            elif job_stage == "RUNNING":
                step_preview_base64 = job_data.get("job_step_preview")
                if step_preview_base64:
                    with open("output.png", "wb") as f:
                        f.write(base64.b64decode(step_preview_base64))
                time.sleep(5)
            elif job_stage == "FAILED":
                return None, "Job failed."
    else:
        return None, "Job ID not found."

def create_status_image():
    if os.path.exists("output.png"):
        return "output.png"
    else:
        return None

def gradio_app():
    with gr.Blocks() as demo:
        prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here")
        with gr.Row():
            image1 = gr.Image(label="Image Prompt 1", type="filepath")
            image2 = gr.Image(label="Image Prompt 2", type="filepath")
            image3 = gr.Image(label="Image Prompt 3", type="filepath")
            image4 = gr.Image(label="Image Prompt 4", type="filepath")
        output_image = gr.Image(label="Generated Image")
        status = gr.Textbox(label="Status")
        
        generate_button = gr.Button("Generate Image")
        generate_button.click(image_prompt, inputs=[prompt, image1, image2, image3, image4], outputs=[output_image, status])
        
        # 🖼️ Display the status image
        status_image = gr.Image(label="Queue Status", interactive=False)
        
        # ⏲️ Update the image every 5 seconds
        demo.load(create_status_image, every=5, outputs=status_image)
    
    demo.launch()

if __name__ == "__main__":
    gradio_app()