File size: 4,659 Bytes
6f8934c
 
 
 
 
 
 
 
 
 
 
9577ec2
6f8934c
 
 
 
 
 
 
 
 
 
9577ec2
6f8934c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69d0c7f
 
6f8934c
 
 
 
 
 
9577ec2
 
 
 
 
 
6f8934c
69d0c7f
6f8934c
 
 
 
9577ec2
6f8934c
69d0c7f
6f8934c
 
 
 
69d0c7f
9577ec2
69d0c7f
9577ec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f8934c
 
 
 
 
 
69d0c7f
6f8934c
 
 
 
9577ec2
6f8934c
 
69d0c7f
6f8934c
 
 
 
 
 
 
 
 
 
 
 
 
69d0c7f
6f8934c
 
 
 
69d0c7f
 
 
 
 
 
 
6f8934c
9577ec2
6f8934c
 
 
 
69d0c7f
 
9577ec2
69d0c7f
 
6f8934c
69d0c7f
 
9577ec2
 
69d0c7f
 
6f8934c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import gradio as gr
import os
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread

# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)

DESCRIPTION = '''
<div>
<h1 style="text-align: center;">Mistral 8B Instruct</h1>
</div>
'''

LICENSE = """
<p/>
---
"""

PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Mistral-8B</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
</div>
"""

css = """
h1 {
  text-align: center;
  display: block;
}

#duplicate-button {
  margin: auto;
  color: white;
  background: #1565c0;
  border-radius: 100vh;
}
"""

# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("mistralai/Ministral-8B-Instruct-2410")
model = AutoModelForCausalLM.from_pretrained("mistralai/Ministral-8B-Instruct-2410", device_map="auto")

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

@spaces.GPU(duration=120)
def chat_mistral(message: str, 
                 history: list, 
                 temperature: float, 
                 top_p: float, 
                 max_new_tokens: int,
                 system_prompt: str) -> str:
    """
    Generate a streaming response using the Mistral-8B model.
    Args:
        message (str): The input message.
        history (list): The conversation history used by ChatInterface.
        temperature (float): The temperature for generating the response.
        top_p (float): The top-p (nucleus) sampling parameter.
        max_new_tokens (int): The maximum number of new tokens to generate.
        system_prompt (str): The system prompt to guide the assistant's behavior.
    Returns:
        str: The generated response.
    """
    conversation = []

    # Format system prompt correctly using [INST]
    if system_prompt:
        formatted_prompt = f"[INST] {system_prompt} [/INST]\n\n"
    else:
        formatted_prompt = ""

    # Modify first user message to include system prompt
    if history:
        first_user_msg = f"{formatted_prompt}{history[0][0]}" if formatted_prompt else history[0][0]
        conversation.append({"role": "user", "content": first_user_msg})
        conversation.append({"role": "assistant", "content": history[0][1]})

        for user, assistant in history[1:]:
            conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    else:
        # First message in a new conversation
        first_message = f"{formatted_prompt}{message}" if formatted_prompt else message
        conversation.append({"role": "user", "content": first_message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        eos_token_id=terminators,
    )

    if temperature == 0:
        generate_kwargs['do_sample'] = False
        
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)
        

# Gradio block
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')

with gr.Blocks(fill_height=True, css=css) as demo:
    
    gr.Markdown(DESCRIPTION)

    system_prompt_input = gr.Textbox(
        label="System Prompt",
        placeholder="Enter system instructions for the model...",
        lines=2
    )

    gr.ChatInterface(
        fn=chat_mistral,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            system_prompt_input,
            gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature", render=False),
            gr.Slider(minimum=0, maximum=1, step=0.1, value=0.9, label="Top-p", render=False),
            gr.Slider(minimum=128, maximum=4096, step=1, value=4096, label="Max new tokens", render=False),
        ],
        examples=[
            ['Are you a sentient being?']
        ],
        cache_examples=False,
        type='messages',
    )

if __name__ == "__main__":
    demo.launch()