File size: 5,008 Bytes
4d6e8c2
 
 
 
 
 
 
 
 
c98f02f
41b7068
 
 
c98f02f
 
a8a6edb
c98f02f
41b7068
 
 
 
 
4d6e8c2
 
41b7068
1c33274
70f5f26
1c33274
70f5f26
4d6e8c2
 
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70f5f26
 
 
 
 
4d6e8c2
41b7068
 
 
 
 
 
 
 
 
c98f02f
41b7068
 
 
 
c98f02f
41b7068
 
 
70f5f26
41b7068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70f5f26
 
 
 
4d6e8c2
 
 
 
a8a6edb
4d6e8c2
 
 
 
 
 
 
bb3ba6b
4d6e8c2
 
 
 
1c33274
4d6e8c2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

## add-on imports
import numpy as np

# Logistic REG reqs
from sentence_transformers import SentenceTransformer
from sklearn.preprocessing import MinMaxScaler
import skops.io as sio

# BERT reqs
from transformers import AutoTokenizer,BertForSequenceClassification,AutoModelForSequenceClassification,Trainer, TrainingArguments,DataCollatorWithPadding
from datasets import Dataset
import torch

router = APIRouter()

DESCRIPTION = "Simple BERT classif"
ROUTE = "/text"

@router.post(ROUTE, tags=["Text Task"], 
             description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
    """
    Evaluate text classification for climate disinformation detection.
    
    Current Model: Random Baseline
    - Makes random predictions from the label space (0-7)
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name)

    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})

    # Split dataset
    train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
    test_dataset = train_test["test"]
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------   
    
    ######################## LOG REG  ########################
    # ## Models loading
    # # Embedding model
    # query_prompt_name = "s2s_query"
    # model = SentenceTransformer("dunzhang/stella_en_400M_v5",trust_remote_code=True).cuda()

    # # Pre-trained Logistic Regression model
    # trusted_types = ['sklearn.feature_selection._univariate_selection.f_classif']
    # disp = sio.load('./tasks/logistic_regression_model.skops',trusted=trusted_types)
    
    # ## Data prep
    # embeddings = model.encode(list(test_dataset['quote']), prompt_name=query_prompt_name)
    # scaler = MinMaxScaler()
    # X_scaled = scaler.fit_transform(embeddings)
    
    # ## Predictions
    # predictions = disp.predict(X_scaled)


    ######################## BERT  ########################
    ## Model loading
    model = BertForSequenceClassification.from_pretrained("Oriaz/climate_change_bert_classif")
    tokenizer = AutoTokenizer.from_pretrained("Oriaz/climate_change_bert_classif")

    ## Data prep
    def preprocess_function(df):
        return tokenizer(df["quote"], truncation=True)
    tokenized_test = test_dataset.map(preprocess_function, batched=True)

    ## Modify inference model
    training_args = torch.load("./tasks/utils/training_args.bin")
    training_args.eval_strategy='no'

    trainer = Trainer(
        model=model,
        args=training_args,
        tokenizer=tokenizer
    )

    ## prediction
    preds = trainer.predict(tokenized_test)
    predictions = np.array([np.argmax(x) for x in preds[0]])

    
    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   

    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    true_labels = test_dataset["label"]
    accuracy = accuracy_score(true_labels, predictions)
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results