File size: 5,008 Bytes
4d6e8c2 c98f02f 41b7068 c98f02f a8a6edb c98f02f 41b7068 4d6e8c2 41b7068 1c33274 70f5f26 1c33274 70f5f26 4d6e8c2 70f5f26 4d6e8c2 70f5f26 4d6e8c2 41b7068 c98f02f 41b7068 c98f02f 41b7068 70f5f26 41b7068 70f5f26 4d6e8c2 a8a6edb 4d6e8c2 bb3ba6b 4d6e8c2 1c33274 4d6e8c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
## add-on imports
import numpy as np
# Logistic REG reqs
from sentence_transformers import SentenceTransformer
from sklearn.preprocessing import MinMaxScaler
import skops.io as sio
# BERT reqs
from transformers import AutoTokenizer,BertForSequenceClassification,AutoModelForSequenceClassification,Trainer, TrainingArguments,DataCollatorWithPadding
from datasets import Dataset
import torch
router = APIRouter()
DESCRIPTION = "Simple BERT classif"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
######################## LOG REG ########################
# ## Models loading
# # Embedding model
# query_prompt_name = "s2s_query"
# model = SentenceTransformer("dunzhang/stella_en_400M_v5",trust_remote_code=True).cuda()
# # Pre-trained Logistic Regression model
# trusted_types = ['sklearn.feature_selection._univariate_selection.f_classif']
# disp = sio.load('./tasks/logistic_regression_model.skops',trusted=trusted_types)
# ## Data prep
# embeddings = model.encode(list(test_dataset['quote']), prompt_name=query_prompt_name)
# scaler = MinMaxScaler()
# X_scaled = scaler.fit_transform(embeddings)
# ## Predictions
# predictions = disp.predict(X_scaled)
######################## BERT ########################
## Model loading
model = BertForSequenceClassification.from_pretrained("Oriaz/climate_change_bert_classif")
tokenizer = AutoTokenizer.from_pretrained("Oriaz/climate_change_bert_classif")
## Data prep
def preprocess_function(df):
return tokenizer(df["quote"], truncation=True)
tokenized_test = test_dataset.map(preprocess_function, batched=True)
## Modify inference model
training_args = torch.load("./tasks/utils/training_args.bin")
training_args.eval_strategy='no'
trainer = Trainer(
model=model,
args=training_args,
tokenizer=tokenizer
)
## prediction
preds = trainer.predict(tokenized_test)
predictions = np.array([np.argmax(x) for x in preds[0]])
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
true_labels = test_dataset["label"]
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results |